基于阿尔茨海默病小鼠模型中海马体群体活动的人工智能驱动的小鼠行为跟踪及其在神经元流形分析中的应用
AI-Powered Mice Behavior Tracking and Its Application for Neuronal Manifold Analysis Based on Hippocampal Ensemble Activity in an Alzheimer's Disease Mice Model.
作者信息
Gerasimov Evgenii, Karasev Viacheslav, Umnov Sergey, Chukanov Viacheslav, Pchitskaya Ekaterina
机构信息
Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194021, Russia.
Laboratory of Biomedical Imaging and Data Analysis, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194021, Russia.
出版信息
Int J Mol Sci. 2025 Jul 25;26(15):7180. doi: 10.3390/ijms26157180.
Investigating brain area functions requires advanced technologies, but meaningful insights depend on correlating neural signals with behavior. Traditional mice behavior annotation methods, including manual and semi-automated approaches, are limited by subjectivity and time constraints. To overcome these limitations, our study employs the YOLO neural network for precise mice tracking and composite RGB frames for behavioral scoring. Our model, trained on over 10,000 frames, accurately classifies sitting, running, and grooming behaviors. Additionally, we provide statistical metrics and data visualization tools. We further combined AI-powered behavior labeling to examine hippocampal neuronal activity using fluorescence microscopy. To analyze neuronal circuit dynamics, we utilized a manifold analysis approach, revealing distinct functional patterns corresponding to transgenic 5xFAD Alzheimer's model mice. This open-source software enhances the accuracy and efficiency of behavioral and neural data interpretation, advancing neuroscience research.
研究脑区功能需要先进技术,但有意义的见解依赖于将神经信号与行为相关联。传统的小鼠行为注释方法,包括手动和半自动方法,受到主观性和时间限制的制约。为克服这些限制,我们的研究采用YOLO神经网络进行精确的小鼠跟踪,并使用复合RGB帧进行行为评分。我们的模型在超过10000帧上进行训练,能够准确分类坐、跑和梳理行为。此外,我们还提供统计指标和数据可视化工具。我们进一步结合人工智能驱动的行为标记,使用荧光显微镜检查海马神经元活动。为了分析神经元回路动力学,我们采用了流形分析方法,揭示了与转基因5xFAD阿尔茨海默病模型小鼠相对应的不同功能模式。这种开源软件提高了行为和神经数据解释的准确性和效率,推动了神经科学研究。