文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种双功能抗程序性死亡蛋白1/转化生长因子-β融合抗体可恢复抗肿瘤免疫并重塑肿瘤微环境。

A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment.

作者信息

Nan Lidi, Qin Yuting, Huang Xiao, Pan Mingzhu, Wang Xiaomu, Lv Yanqing, Sorensen Annette, Kang Xiaoqiang, Ling Hong, Zhang Juan

机构信息

Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China.

Nanjing Leads Biolabs Co., Ltd., Nanjing 210019, China.

出版信息

Int J Mol Sci. 2025 Aug 5;26(15):7567. doi: 10.3390/ijms26157567.


DOI:10.3390/ijms26157567
PMID:40806691
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12347602/
Abstract

Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial-mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade.

摘要

尽管PD-1/PD-L1抑制剂已经改变了癌症免疫治疗,但由于肿瘤微环境(TME)驱动的耐药性,相当一部分患者并未获得临床益处。转化生长因子-β(TGF-β)是与这种耐药性相关的关键免疫抑制细胞因子。几种共同靶向PD-1和TGF-β信号传导的双功能抗体已进入临床试验并显示出令人鼓舞的疗效,但其协同作用的机制基础尚未完全了解。在这里,我们构建了015s,一种同时靶向小鼠PD-1和TGF-β的双功能融合抗体,并在临床前模型中评估了其抗肿瘤疗效和机制影响。抗体015s表现出高亲和力、双靶点结合以及对PD-1和TGF-β信号传导的有效抑制。在体内,与抗小鼠PD-1或TGF-β受体II(TGF-βRII)单药治疗相比,015s显著抑制肿瘤生长。当与靶向CD24的ADC联合使用时,015s产生了更大的抗肿瘤活性并实现了肿瘤完全消退。机制研究表明,015s显著减少肿瘤细胞迁移和侵袭,逆转上皮-间质转化(EMT),降低微血管密度,并减弱TME内的胶原沉积。抗体015s还降低了生物活性TGF-β1并增加了肿瘤内IFN-γ,营造了一个更具免疫刺激作用的微环境。这些发现支持进一步开发针对具有高TGF-β活性或对免疫检查点阻断反应有限的癌症的PD-1/TGF-β双功能抗体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/43305666cfb3/ijms-26-07567-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/11a9ddd2c8c4/ijms-26-07567-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/43c2eaec7db5/ijms-26-07567-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/96f9c5d2880f/ijms-26-07567-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/7362d2c4f7c4/ijms-26-07567-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/82db61869e30/ijms-26-07567-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/43305666cfb3/ijms-26-07567-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/11a9ddd2c8c4/ijms-26-07567-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/43c2eaec7db5/ijms-26-07567-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/96f9c5d2880f/ijms-26-07567-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/7362d2c4f7c4/ijms-26-07567-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/82db61869e30/ijms-26-07567-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c711/12347602/43305666cfb3/ijms-26-07567-g006.jpg

相似文献

[1]
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment.

Int J Mol Sci. 2025-8-5

[2]
Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment.

Mol Oncol. 2022-6

[3]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[4]
Oncolytic reovirus enhances the effect of CEA immunotherapy when combined with PD1-PDL1 inhibitor in a colorectal cancer model.

Immunotherapy. 2025-4

[5]
The pancreatic cancer immune tumor microenvironment is negatively remodeled by gemcitabine while TGF-β receptor plus dual checkpoint inhibition maintains antitumor immune cells.

Mol Carcinog. 2022-6

[6]
Characterization and functional evaluation of JS207, a novel bispecific antibody against human PD-1 and VEGFA.

Front Immunol. 2025-6-18

[7]
ANV600 is a novel PD-1 targeted IL-2Rβγ agonist that selectively expands tumor antigen-specific T cells and potentiates PD-1 checkpoint inhibitor therapy.

J Immunother Cancer. 2025-7-15

[8]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[9]
Chondroitin sulfate proteoglycan 4 increases invasion of recessive dystrophic epidermolysis bullosa-associated cutaneous squamous cell carcinoma by modifying transforming growth factor-β signalling.

Br J Dermatol. 2024-12-23

[10]
Toll-Like receptor 3-mediated interferon-β production is suppressed by oncostatin m and a broader epithelial-mesenchymal transition program.

Breast Cancer Res. 2024-11-26

引用本文的文献

[1]
Tumor microenvironment-preserving gliosarcoma organoids as an in vitro preclinical platform: a comparative analysis with glioblastoma models.

J Transl Med. 2025-8-14

本文引用的文献

[1]
Immune checkpoint therapy-current perspectives and future directions.

Cell. 2023-4-13

[2]
Tailored immunotherapy approach with nivolumab with or without ipilimumab in patients with advanced transitional cell carcinoma after platinum-based chemotherapy (TITAN-TCC): a multicentre, single-arm, phase 2 trial.

Lancet Oncol. 2023-4

[3]
TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy.

Front Immunol. 2022

[4]
Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors.

J Hematol Oncol. 2022-10-8

[5]
Current insight into the regulation of PD-L1 in cancer.

Exp Hematol Oncol. 2022-7-30

[6]
Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors.

J Hematol Oncol. 2022-7-7

[7]
Turning cold tumors hot: from molecular mechanisms to clinical applications.

Trends Immunol. 2022-7

[8]
Heterogeneity of the tumor immune microenvironment and its clinical relevance.

Exp Hematol Oncol. 2022-4-23

[9]
The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance.

Cancer Lett. 2021-11-1

[10]
Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study.

Lancet Oncol. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索