文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于遗传算法优化的长短期记忆神经网络对中高压电池荷电状态的估计

State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms.

作者信息

Carrera Romel, Quiroz Leonidas, Guevara Cesar, Acosta-Vargas Patricia

机构信息

Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica Sede Latacunga, Av. General Rumiñahui S/N, Sangolquí 171103, Ecuador.

Quantitative Methods Department, CUNEF Universidad, 28040 Madrid, Spain.

出版信息

Sensors (Basel). 2025 Jul 26;25(15):4632. doi: 10.3390/s25154632.


DOI:10.3390/s25154632
PMID:40807798
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349304/
Abstract

This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48-72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.

摘要

本研究提出了一种用于锂离子电池荷电状态(SOC)估计的混合方法,该方法使用经遗传算法(GA)优化的长短期记忆(LSTM)神经网络,并结合库仑计数(CC)作为初始估计器。使用中压(48 - 72 V)锂离子电池组在标准化驾驶循环(NEDC和WLTP)下进行了实验测试。所提出的方法通过动态融合参数α用CC估计值重新校准LSTM输出,从而提高了动态条件下的预测精度。这种方法的新颖之处在于将机器学习与物理建模相结合,并通过进化算法进行优化,以解决独立方法在实时应用中的局限性。该混合模型的平均绝对误差(MAE)为0.181%,优于传统估计策略。这些发现有助于为电动汽车和二次利用应用开发更可靠的电池管理系统(BMS)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/723710bf102c/sensors-25-04632-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/ea090712aab0/sensors-25-04632-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/796b9668cc85/sensors-25-04632-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/4c14b42ff6f5/sensors-25-04632-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/cd54bec801f5/sensors-25-04632-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/fbb8fdc6c7e6/sensors-25-04632-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/e76cba3c1f91/sensors-25-04632-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/ef29954143d2/sensors-25-04632-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/2454ce75d089/sensors-25-04632-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/dd0a33595f81/sensors-25-04632-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/f6e2b17b7a9b/sensors-25-04632-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/b6e6f319666f/sensors-25-04632-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/04779942fd51/sensors-25-04632-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/8d8b7992aedb/sensors-25-04632-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/dfc1e28d16a2/sensors-25-04632-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/7a47b23a83c8/sensors-25-04632-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/867ca26a4ecb/sensors-25-04632-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/1850404a6abf/sensors-25-04632-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/45de8717c4fe/sensors-25-04632-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/492c4ab120bf/sensors-25-04632-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/723710bf102c/sensors-25-04632-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/ea090712aab0/sensors-25-04632-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/796b9668cc85/sensors-25-04632-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/4c14b42ff6f5/sensors-25-04632-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/cd54bec801f5/sensors-25-04632-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/fbb8fdc6c7e6/sensors-25-04632-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/e76cba3c1f91/sensors-25-04632-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/ef29954143d2/sensors-25-04632-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/2454ce75d089/sensors-25-04632-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/dd0a33595f81/sensors-25-04632-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/f6e2b17b7a9b/sensors-25-04632-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/b6e6f319666f/sensors-25-04632-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/04779942fd51/sensors-25-04632-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/8d8b7992aedb/sensors-25-04632-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/dfc1e28d16a2/sensors-25-04632-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/7a47b23a83c8/sensors-25-04632-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/867ca26a4ecb/sensors-25-04632-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/1850404a6abf/sensors-25-04632-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/45de8717c4fe/sensors-25-04632-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/492c4ab120bf/sensors-25-04632-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/12349304/723710bf102c/sensors-25-04632-g020.jpg

相似文献

[1]
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms.

Sensors (Basel). 2025-7-26

[2]
An Enhanced Cascaded Deep Learning Framework for Multi-Cell Voltage Forecasting and State of Charge Estimation in Electric Vehicle Batteries Using LSTM Networks.

Sensors (Basel). 2025-6-17

[3]
CNN-LSTM optimized with SWATS for accurate state-of-charge estimation in lithium-ion batteries considering internal resistance.

Sci Rep. 2025-8-12

[4]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[5]
Voltage faults diagnosis for lithium-ion batteries in electric vehicles using optimized graphical neural network.

Sci Rep. 2025-7-27

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Embedded Sensor Data Fusion and TinyML for Real-Time Remaining Useful Life Estimation of UAV Li Polymer Batteries.

Sensors (Basel). 2025-6-18

[8]
Electrophoresis

2025-1

[9]
Hybrid closed-loop systems for managing blood glucose levels in type 1 diabetes: a systematic review and economic modelling.

Health Technol Assess. 2024-12

[10]
Long short-term memory (LSTM) networks for precision prediction of Schottky barrier photodiode behavior at different ıllumination levels.

Sci Rep. 2025-7-2

本文引用的文献

[1]
Quaternion generative adversarial -driven Soc estimation using Tyrannosaurus optimizer for improving hybrid electric vehicles renewably powered energy management.

Sci Rep. 2025-5-8

[2]
A population based optimization of convolutional neural networks for chronic kidney disease prediction.

Sci Rep. 2025-4-25

[3]
Enhanced state of charge estimation in electric vehicle batteries using chicken swarm optimization with open ended learning.

Sci Rep. 2025-3-28

[4]
Stock market trading actor-critic reinforcement learning and adaptable data structure.

PeerJ Comput Sci. 2025-2-18

[5]
Ensemble genetic and CNN model-based image classification by enhancing hyperparameter tuning.

Sci Rep. 2025-1-6

[6]
Deep learning based emulator for predicting voltage behaviour in lithium ion batteries.

Sci Rep. 2024-11-21

[7]
Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms.

Sci Rep. 2024-7-11

[8]
Advancing state estimation for lithium-ion batteries with hysteresis through systematic extended Kalman filter tuning.

Sci Rep. 2024-5-30

[9]
BackMov: Individualized Motion Capture-Based Test to Assess Low Back Pain Mobility Recovery after Treatment.

Sensors (Basel). 2024-1-31

[10]
State of Charge Estimation Model Based on Genetic Algorithms and Multivariate Linear Regression with Applications in Electric Vehicles.

Sensors (Basel). 2023-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索