Carrera Romel, Quiroz Leonidas, Guevara Cesar, Acosta-Vargas Patricia
Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica Sede Latacunga, Av. General Rumiñahui S/N, Sangolquí 171103, Ecuador.
Quantitative Methods Department, CUNEF Universidad, 28040 Madrid, Spain.
Sensors (Basel). 2025 Jul 26;25(15):4632. doi: 10.3390/s25154632.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48-72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.
本研究提出了一种用于锂离子电池荷电状态(SOC)估计的混合方法,该方法使用经遗传算法(GA)优化的长短期记忆(LSTM)神经网络,并结合库仑计数(CC)作为初始估计器。使用中压(48 - 72 V)锂离子电池组在标准化驾驶循环(NEDC和WLTP)下进行了实验测试。所提出的方法通过动态融合参数α用CC估计值重新校准LSTM输出,从而提高了动态条件下的预测精度。这种方法的新颖之处在于将机器学习与物理建模相结合,并通过进化算法进行优化,以解决独立方法在实时应用中的局限性。该混合模型的平均绝对误差(MAE)为0.181%,优于传统估计策略。这些发现有助于为电动汽车和二次利用应用开发更可靠的电池管理系统(BMS)。
Front Neurorobot. 2025-7-30
2025-1
PeerJ Comput Sci. 2025-2-18