Brăileanu Patricia Isabela, Mocanu Marius-Teodor, Dobrescu Tiberiu Gabriel, Pascu Nicoleta Elisabeta, Dobrotă Dan
Department of Robotics and Manufacturing Systems, Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania.
National Institute for Laser, Plasma and Radiation Physics Romania, 077125 Măgurele, Romania.
Polymers (Basel). 2025 Aug 7;17(15):2159. doi: 10.3390/polym17152159.
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore D hardness and coefficient of friction (COF) for PLA and Iglidur materials, incorporating diverse infill patterns. The results reveal that specific combinations (e.g., grid infill with 90% density) optimize hardness and minimize friction, offering practical insights for design optimization in functional parts. Our aim is to provide design insights for enhanced wear resistance and hardness through tailored structural configurations. Carbon Fiber-reinforced PLA (PLA CF), aramid fiber-reinforced Acrylonitrile Styrene Acrylate (Kevlar), and Iglidur I180-BL tribofilament. Disc specimens were fabricated with gyroid infill densities ranging from 10% to 100%. Experimental methodologies included Ball-on-Disc tests conducted under dry sliding conditions (5 N normal load, 150 mm/s sliding speed) to assess friction and wear characteristics. These tribological evaluations were complemented by profilometric and microscopic analyses and Shore D hardness testing. The results show that Iglidur I180-BL achieved the lowest friction coefficients (0.141-0.190) and negligible wear, while PLA specimens with 90% infill demonstrated a polishing-type wear with minimal material loss and a friction coefficient (COF) of ~0.108. In contrast, PLA CF and Kevlar exhibited higher wear depths (up to 154 µm for Kevlar) and abrasive mechanisms due to fiber detachment. Shore hardness values increased with infill density, with PLA reaching a maximum of 82.7 Shore D. These findings highlight the critical interplay between infill architecture and surface patterning and offer actionable guidelines for the functional design of durable FDM components in load-bearing or sliding applications.
本研究调查了熔融沉积建模(FDM)打印的聚合物试样中填充结构与表面纹理之间的相互作用,以及它们对摩擦学和机械性能的综合影响。与以往专注于单变量分析的研究不同,本研究对聚乳酸(PLA)和易格斯工程塑料(Iglidur)材料的邵氏D硬度和摩擦系数(COF)进行了比较评估,纳入了多种填充图案。结果表明,特定组合(如密度为90%的网格填充)可优化硬度并使摩擦最小化,为功能部件的设计优化提供了实用见解。我们的目标是通过定制结构配置,为提高耐磨性和硬度提供设计见解。碳纤维增强聚乳酸(PLA CF)、芳纶纤维增强丙烯腈苯乙烯丙烯酸酯(凯夫拉)和易格斯I180-BL摩擦丝。用从10%到100%的螺旋状填充密度制作圆盘试样。实验方法包括在干滑动条件下(5 N法向载荷,150 mm/s滑动速度)进行的球盘试验,以评估摩擦和磨损特性。这些摩擦学评估辅以轮廓测量和微观分析以及邵氏D硬度测试。结果表明,易格斯I180-BL的摩擦系数最低(0.141-0.190),磨损可忽略不计,而填充率为90%的PLA试样表现出抛光型磨损,材料损失最小,摩擦系数(COF)约为0.108。相比之下,PLA CF和凯夫拉表现出更高的磨损深度(凯夫拉高达154 µm)以及由于纤维脱离导致的磨料磨损机制。邵氏硬度值随填充密度增加而增加,PLA最高可达82.7邵氏D。这些发现突出了填充结构与表面图案之间的关键相互作用,并为承重或滑动应用中耐用FDM部件的功能设计提供了可行的指导方针。