Suppr超能文献

英国生物银行中估计的小而密低密度脂蛋白胆固醇与动脉粥样硬化性心血管风险

Estimated Small, Dense LDL Cholesterol and Atherosclerotic Cardiovascular Risk in the UK Biobank.

作者信息

Zubiran Rafael, Sampson Maureen, Wolska Anna, Remaley Alan T

机构信息

Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. (R.Z., A.W., A.T.R.).

Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD. (M.S.).

出版信息

Arterioscler Thromb Vasc Biol. 2025 Aug 14. doi: 10.1161/ATVBAHA.125.323157.

Abstract

BACKGROUND

A key step in primary prevention is the assessment of atherosclerotic cardiovascular disease (ASCVD) risk. Risk enhancer tests are additional tools used to further improve ASCVD risk assessment over conventional risk markers. Our objective was to determine whether estimated small, dense low-density lipoprotein cholesterol (E-sdLDL-C) can improve risk assessment and serve as a new risk enhancer test.

METHODS

We used a prospective cohort analysis of participants in the UK Biobank study with a median (interquartile range) follow-up of 10 (6.7-12.3) years. We included 271 760 individuals who were not on lipid-lowering medication at baseline and did not have incident ASCVD. The primary study outcome was the incidence of all-cause ASCVD.

RESULTS

E-sdLDL-C was strongly associated with ASCVD events with a hazard ratio (HR) of 1.23 (95% CI, 1.22-1.24). After multivariable adjustment for age, sex, systolic blood pressure, hypertension, type 2 diabetes, and blood pressure medications, E-sdLDL-C and ApoB (apolipoprotein B) remained the most significant lipid risk factors (HR, 1.18 [95% CI, 1.16-1.19] and 1.17 [95% CI, 1.16-1.18] per SD, respectively). After further adjustment for ApoB, the association between low-density lipoprotein cholesterol (LDL-C) with all-cause ASCVD was completely reversed with an HR of 0.84 (95% CI, 0.81-0.86), but E-sdLDL-C continued to have a significant positive association with an HR of 1.11 (95% CI, 1.08-1.13). When E-sdLDL-C was discordantly higher than either LDL-C or ApoB, the risk for ASCVD was higher (LDL-C, 31% higher; ApoB, 17% higher). When elevated E-sdLDL-C is coupled with other risk enhancer tests, there is a greater risk for developing ASCVD.

CONCLUSIONS

In a UK Biobank cohort for primary prevention, the risk of all-cause ASCVD was better captured by E-sdLDL-C than LDL-C. It was also more predictive than LDL-C and ApoB when discordant with these 2 measures. E-sdLDL-C, which can be freely and automatically calculated from a standard lipid panel, can potentially improve ASCVD risk assessment without additional laboratory testing.

摘要

背景

一级预防的关键步骤是评估动脉粥样硬化性心血管疾病(ASCVD)风险。风险增强测试是用于在传统风险标志物基础上进一步改善ASCVD风险评估的额外工具。我们的目标是确定估计的小而密低密度脂蛋白胆固醇(E-sdLDL-C)是否能改善风险评估并作为一种新的风险增强测试。

方法

我们对英国生物银行研究中的参与者进行了前瞻性队列分析,中位(四分位间距)随访时间为10(6.7 - 12.3)年。我们纳入了271760名在基线时未服用降脂药物且无新发ASCVD的个体。主要研究结局是全因ASCVD的发病率。

结果

E-sdLDL-C与ASCVD事件密切相关,风险比(HR)为1.23(95%CI,1.22 - 1.24)。在对年龄、性别、收缩压、高血压、2型糖尿病和血压药物进行多变量调整后,E-sdLDL-C和载脂蛋白B(ApoB)仍然是最显著的脂质风险因素(每标准差的HR分别为1.18[95%CI,1.16 - 1.19]和1.17[95%CI,1.16 - 1.18])。在进一步调整ApoB后,低密度脂蛋白胆固醇(LDL-C)与全因ASCVD之间的关联完全逆转,HR为0.84(95%CI,0.81 - 0.86),但E-sdLDL-C继续与ASCVD有显著正相关,HR为1.11(95%CI,1.08 - 1.13)。当E-sdLDL-C高于LDL-C或ApoB时,ASCVD风险更高(LDL-C高31%;ApoB高17%)。当升高的E-sdLDL-C与其他风险增强测试同时存在时,发生ASCVD的风险更高。

结论

在英国生物银行的一级预防队列中,E-sdLDL-C比LDL-C能更好地捕捉全因ASCVD风险。当与LDL-C和ApoB不一致时,它也比LDL-C和ApoB更具预测性。E-sdLDL-C可从标准血脂检测中免费自动计算得出,有可能在无需额外实验室检测的情况下改善ASCVD风险评估。

相似文献

本文引用的文献

1
Measure Apolipoprotein B If We Believe What We Say About Precision Medicine.如果我们所言不虚,那么就测量载脂蛋白B。
Circulation. 2025 Feb 4;151(5):257-259. doi: 10.1161/CIRCULATIONAHA.123.067559. Epub 2025 Feb 3.
4
Development and Validation of the American Heart Association's PREVENT Equations.美国心脏协会 PREVENT 方程的制定与验证。
Circulation. 2024 Feb 6;149(6):430-449. doi: 10.1161/CIRCULATIONAHA.123.067626. Epub 2023 Nov 10.
7
Small dense low-density lipoprotein: Analytical review.小而密低密度脂蛋白:分析综述。
Clin Chim Acta. 2021 Sep;520:172-178. doi: 10.1016/j.cca.2021.06.012. Epub 2021 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验