文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测宫颈癌预后的泛素化相关基因的鉴定与验证

Identification and validation of ubiquitination-related genes for predicting cervical cancer outcome.

作者信息

Jin Ge, Fan Xiaomei, Liang Xiaoliang, Dai Honghong, Wang Jun

机构信息

Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China.

Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Hebei Clinical Research Center for Radiation Oncology, Shijiazhuang, China.

出版信息

Front Genet. 2025 Jul 30;16:1578075. doi: 10.3389/fgene.2025.1578075. eCollection 2025.


DOI:10.3389/fgene.2025.1578075
PMID:40809844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12343280/
Abstract

INTRODUCTION: Abnormalities in ubiquitination-related pathways or systems are closely associated with various cancers, including cervical cancer (CC). However, the biological function and clinical value of ubiquitination-related genes (UbLGs) in CC remain unclear. This study aimed to explore key UbLGs associated with CC, construct a prognostic model, and investigate their potential clinical and immunological significance. METHODS: Differentially expressed genes (DEGs) between CC (tumor) and standard samples in self-sequencing and TCGA-GTEx-CESC datasets were identified using differential analysis. We identified overlaps between DEGs in both datasets and UbLGs, revealing key crossover genes. Subsequently, biological markers were identified via univariate Cox regression analysis and least absolute shrinkage and selection operator algorithms. After conducting independent prognostic analysis, immune infiltration analysis was performed to investigate the immune cells that differed between the two risk subgroups. Differences in immune checkpoint expression between the subgroups were analyzed. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) was performed to confirm the expression trends of the biomarkers. RESULTS: Differentially expressed genes related to ubiquitination were screened from the Self-seq and TCGAGTEx-CESC datasets, and five key biomarkers (MMP1, RNF2, TFRC, SPP1, and CXCL8) were identified. The risk score model constructed based on these biomarkers could effectively predict the survival rate of cervical cancer patients (AUC >0.6 for 1/3/5 years). Immune microenvironment analysis showed that 12 types of immune cells, including memory B cells and M0 macrophages, as well as four immune checkpoints, exhibited significant differences between the high-risk and low-risk groups. RT-qPCR confirmed that MMP1, TFRC, and CXCL8 were upregulated in tumor tissues. DISCUSSION: Our study identified five ubiquitination-related biomarkers, namely, MMP1, RNF2, TFRC, SPP1, and CXCL8, which were significantly associated with CC. The validated risk model demonstrates strong predictive value for patient survival. These findings provide crucial insights into the role of ubiquitination in CC pathogenesis and offer valuable targets for advancing future research and therapeutic strategies.

摘要

引言:泛素化相关途径或系统的异常与包括宫颈癌(CC)在内的多种癌症密切相关。然而,泛素化相关基因(UbLGs)在CC中的生物学功能和临床价值仍不清楚。本研究旨在探索与CC相关的关键UbLGs,构建预后模型,并研究其潜在的临床和免疫学意义。 方法:使用差异分析确定自我测序以及TCGA-GTEx-CESC数据集中CC(肿瘤)与标准样本之间的差异表达基因(DEGs)。我们确定了两个数据集中DEGs与UbLGs之间的重叠,揭示了关键的交叉基因。随后,通过单变量Cox回归分析和最小绝对收缩和选择算子算法确定生物学标志物。在进行独立预后分析后,进行免疫浸润分析以研究两个风险亚组之间存在差异的免疫细胞。分析亚组之间免疫检查点表达的差异。进行实时定量聚合酶链反应(RT-qPCR)以确认生物标志物的表达趋势。 结果:从自我测序和TCGA-GTEx-CESC数据集中筛选出与泛素化相关的差异表达基因,并鉴定出五个关键生物标志物(MMP1、RNF2、TFRC、SPP1和CXCL8)。基于这些生物标志物构建的风险评分模型可以有效预测宫颈癌患者的生存率(1/3/5年的AUC>0.6)。免疫微环境分析表明,包括记忆B细胞和M0巨噬细胞在内的12种免疫细胞以及四个免疫检查点在高风险和低风险组之间存在显著差异。RT-qPCR证实MMP1、TFRC和CXCL8在肿瘤组织中上调。 讨论:我们的研究确定了五个与泛素化相关的生物标志物,即MMP1、RNF2、TFRC、SPP1和CXCL8,它们与CC显著相关。经过验证的风险模型对患者生存具有很强的预测价值。这些发现为泛素化在CC发病机制中的作用提供了重要见解,并为推进未来的研究和治疗策略提供了有价值的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/c417a38752ff/fgene-16-1578075-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/f203a6a2fcde/fgene-16-1578075-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/ef9bab617890/fgene-16-1578075-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/f781e64a9e8a/fgene-16-1578075-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/b267d4520b78/fgene-16-1578075-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/8a98d42e3f7f/fgene-16-1578075-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/59f913215732/fgene-16-1578075-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/c13197af69fb/fgene-16-1578075-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/aeadfe3f3f73/fgene-16-1578075-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/c417a38752ff/fgene-16-1578075-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/f203a6a2fcde/fgene-16-1578075-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/ef9bab617890/fgene-16-1578075-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/f781e64a9e8a/fgene-16-1578075-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/b267d4520b78/fgene-16-1578075-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/8a98d42e3f7f/fgene-16-1578075-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/59f913215732/fgene-16-1578075-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/c13197af69fb/fgene-16-1578075-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/aeadfe3f3f73/fgene-16-1578075-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5bc/12343280/c417a38752ff/fgene-16-1578075-g009.jpg

相似文献

[1]
Identification and validation of ubiquitination-related genes for predicting cervical cancer outcome.

Front Genet. 2025-7-30

[2]
Characterization of novel anoikis-related genes as prognostic biomarkers and key determinants of the immune microenvironment in esophageal cancer.

Front Immunol. 2025-7-11

[3]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[4]
Identification and validation of NEIL2 as a prognostic biomarker and potential therapeutic target in cervical cancer.

Discov Oncol. 2025-7-1

[5]
Integrated proteomics and transcriptomics analysis reveals key regulatory genes between ER-positive/PR-positive and ER-positive/PR-negative breast cancer.

BMC Cancer. 2025-7-1

[6]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Construction and validation of a prognostic model for glioma: an analysis based on mismatch repair-related genes and their correlation with clinicopathological features.

Transl Cancer Res. 2025-5-30

[9]
Development and validation of a prognostic model for efferocytosis-associated genes in cervical squamous cell carcinoma.

Discov Oncol. 2025-7-1

[10]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

本文引用的文献

[1]
CXCL8 is essential for cervical cancer cell acquired radioresistance and acts as a promising therapeutic target in cervical cancer.

Sci Rep. 2025-7-1

[2]
Prognostic Implications and Therapeutic Potential of MXD Genes in Gastric Cancer.

Curr Med Chem. 2025-5-12

[3]
The TFRC as a prognostic biomarker and potential therapeutic target in cervical cancer: a preliminary study.

Front Oncol. 2025-4-15

[4]
RNF2 induces myeloid-derived suppressor cells chemotaxis and promotes hepatocellular carcinoma progression through the TRAF2-NF-κB signaling axis.

Cancer Immunol Immunother. 2025-3-27

[5]
Transferrin Receptor Promotes Endometrial Cancer Proliferation by Activating the Iron-Dependent PI3K/AKT/mTOR Signaling Pathway.

Cancer Sci. 2025-5

[6]
Ferroptosis-related gene transferrin receptor protein 1 expression correlates with the prognosis and tumor immune microenvironment in cervical cancer.

PeerJ. 2024

[7]
IL-8 activates fibroblasts to promote the invasion of HNSCC cells via STAT3-MMP1.

Cell Death Discov. 2024-2-6

[8]
Clinicopathological characteristics of pheochromocytoma/paraganglioma and screening of prognostic markers.

J Surg Oncol. 2023-9

[9]
A pan-cancer analysis of the prognostic and immunological roles of matrix metalloprotease-1 (MMP1) in human tumors.

Front Oncol. 2023-1-13

[10]
High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer.

World J Surg Oncol. 2022-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索