Watson Linley E, Light Rodney A, Shaver Courtney
Department of Cardiology, Baylor Scott & White - Temple, Temple, Texas, USA.
Baylor Scott & White Research Institute, Temple, Texas, USA.
Proc (Bayl Univ Med Cent). 2025 Jul 8;38(5):662-665. doi: 10.1080/08998280.2025.2524877. eCollection 2025.
This study assessed the ability of a real-time artificial intelligence (AI) tool to correctly align early during hospitalization with the discharge status of inpatient versus observation.
This retrospective case-control study at Baylor Scott & White Medical Center - Temple involved patients on 11 randomly chosen calendar days between August 2023 and October 2024. A real-time AI care level score (CLS) and machine learning likelihood (MeL) recommendations for inpatient versus observation discharge status were developed. Receiver operating characteristic curves were used to compare CLS, MeL, and commercial screening tool criteria with actual inpatient versus observation discharge status.
The receiver operating characteristic curve for CLS-based prediction of the MeL recommendation for inpatients had the highest area under the curve (AUC) of 0.9954 (95% confidence interval [CI] = 0.9954, 0.9998). The AUC for only CLS for predicting inpatient discharge was 0.8949 (95% CI = 0.8692, 0.9206). A CLS score ≥76 resulted in the highest correct classification rate of 86%. For CLS and the commercial screening tool, the AUC was the lowest at 0.8419 (95% CI = 0.8121, 0.871).
Patients with a real-time AI CLS ≥76 had an 86% correct assignment of inpatient discharge status.
本研究评估了一种实时人工智能(AI)工具在住院早期正确区分住院患者与观察患者出院状态的能力。
这项在贝勒·斯科特与怀特医疗中心-坦普尔进行的回顾性病例对照研究纳入了2023年8月至2024年10月期间随机选择的11个日历日的患者。开发了用于预测住院患者与观察患者出院状态的实时AI护理水平评分(CLS)和机器学习可能性(MeL)建议。采用受试者工作特征曲线将CLS、MeL和商业筛查工具标准与实际住院患者与观察患者的出院状态进行比较。
基于CLS预测住院患者MeL建议的受试者工作特征曲线下面积(AUC)最高,为0.9954(95%置信区间[CI]=0.9954,0.9998)。仅CLS预测住院患者出院的AUC为0.8949(95%CI=0.8692,0.9206)。CLS评分≥76时,正确分类率最高,为86%。对于CLS和商业筛查工具,AUC最低,为0.8419(95%CI=0.8121,0.871)。
实时AI CLS≥76的患者住院出院状态的正确分配率为86%。