Suppr超能文献

RuO-IrO@Ti阳极对碱性苯酚废水电催化氧化的机理与性能

Mechanism and Performance of Electrocatalytic Oxidation on RuO-IrO@Ti Anode in Alkaline Phenol Wastewater.

作者信息

Song Xinyi, Yuan Peiqing, Xu Xinru, Yang Jingyi

机构信息

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.

State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, PR China.

出版信息

ACS Omega. 2025 Jul 29;10(31):34471-34484. doi: 10.1021/acsomega.5c02679. eCollection 2025 Aug 12.

Abstract

Phenol, a highly biotoxic organic pollutant, is widely present in alkaline wastewater from industries such as petrochemical and coking plants. However, its efficient degradation remains challenging with existing technologies. In this study, a RuO-IrO@Ti electrode was fabricated by a coating method, achieving an oxygen evolution potential of 2.0 V vs RHE (Reversible Hydrogen Electrode). Under alkaline conditions (pH = 10) with optimized operating parameters (38 mA/cm current density and 0.25 M NaCl electrolyte), the degradation efficiency of 125 mg/L phenol reached 92.33% within 180 min. Mechanistic investigations, including radical quenching experiments, GC-MS analysis of intermediates, and Fukui function-based reactive site analysis, confirmed that indirect oxidation dominated the degradation process. The primary degradation pathway involved electrophilic substitution by ClO, synergistically enhanced by oxidation via superoxide radicals (O ). The electrode exhibited outstanding stability, maintaining a degradation efficiency of 90% after 30 consecutive cycles, while the electrochemically active surface area (ECSA) increased from 0.17 cm to 0.44 cm, demonstrating its potential for industrial applications.

摘要

苯酚是一种具有高生物毒性的有机污染物,广泛存在于石化和焦化厂等行业的碱性废水中。然而,利用现有技术对其进行高效降解仍具有挑战性。在本研究中,通过涂层法制备了RuO-IrO@Ti电极,其析氧电位相对于可逆氢电极(RHE)为2.0V。在碱性条件(pH = 10)下,通过优化操作参数(电流密度为38 mA/cm²和0.25 M NaCl电解液),125 mg/L苯酚在180分钟内的降解效率达到92.33%。机理研究包括自由基猝灭实验、中间体的气相色谱-质谱(GC-MS)分析以及基于福井函数的反应位点分析,证实间接氧化主导了降解过程。主要降解途径包括次氯酸根(ClO)的亲电取代反应,并通过超氧自由基(O₂⁻)的氧化作用协同增强。该电极表现出出色的稳定性,连续30个循环后降解效率保持在90%,同时电化学活性表面积(ECSA)从0.17 cm²增加到0.44 cm²,表明其具有工业应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/015f/12355297/66e69a1f81f3/ao5c02679_0002.jpg

相似文献

1
Mechanism and Performance of Electrocatalytic Oxidation on RuO-IrO@Ti Anode in Alkaline Phenol Wastewater.
ACS Omega. 2025 Jul 29;10(31):34471-34484. doi: 10.1021/acsomega.5c02679. eCollection 2025 Aug 12.
7
Investigating the catalytic degradation performance of the actual coking wastewater DOM by iron-containing sludge-based biochar.
J Environ Manage. 2025 Aug;389:126052. doi: 10.1016/j.jenvman.2025.126052. Epub 2025 Jun 4.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

本文引用的文献

1
A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn.
J Chem Phys. 2024 Aug 28;161(8). doi: 10.1063/5.0216272.
2
Fabrication of a boron-doped nanocrystalline diamond grown on an WC-Co electrode for degradation of phenol.
RSC Adv. 2022 Sep 20;12(41):26580-26587. doi: 10.1039/d2ra04449h. eCollection 2022 Sep 16.
4
Electrocatalysis degradation of coal tar wastewater using a novel hydrophobic benzalacetone modified lead dioxide electrode.
Chemosphere. 2022 Feb;289:133014. doi: 10.1016/j.chemosphere.2021.133014. Epub 2021 Dec 2.
7
Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/TiO and Ti/RuO-IrO anodes.
J Environ Manage. 2020 Jul 1;265:110571. doi: 10.1016/j.jenvman.2020.110571. Epub 2020 Apr 13.
8
Construction of TiO nanotube clusters on Ti mesh for immobilizing Sb-SnO to boost electrocatalytic phenol degradation.
J Hazard Mater. 2020 Jul 5;393:122329. doi: 10.1016/j.jhazmat.2020.122329. Epub 2020 Feb 19.
10
Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics.
Water Res. 2018 May 15;135:220-230. doi: 10.1016/j.watres.2018.02.037. Epub 2018 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验