Song Xinyi, Yuan Peiqing, Xu Xinru, Yang Jingyi
International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, PR China.
ACS Omega. 2025 Jul 29;10(31):34471-34484. doi: 10.1021/acsomega.5c02679. eCollection 2025 Aug 12.
Phenol, a highly biotoxic organic pollutant, is widely present in alkaline wastewater from industries such as petrochemical and coking plants. However, its efficient degradation remains challenging with existing technologies. In this study, a RuO-IrO@Ti electrode was fabricated by a coating method, achieving an oxygen evolution potential of 2.0 V vs RHE (Reversible Hydrogen Electrode). Under alkaline conditions (pH = 10) with optimized operating parameters (38 mA/cm current density and 0.25 M NaCl electrolyte), the degradation efficiency of 125 mg/L phenol reached 92.33% within 180 min. Mechanistic investigations, including radical quenching experiments, GC-MS analysis of intermediates, and Fukui function-based reactive site analysis, confirmed that indirect oxidation dominated the degradation process. The primary degradation pathway involved electrophilic substitution by ClO, synergistically enhanced by oxidation via superoxide radicals (O ). The electrode exhibited outstanding stability, maintaining a degradation efficiency of 90% after 30 consecutive cycles, while the electrochemically active surface area (ECSA) increased from 0.17 cm to 0.44 cm, demonstrating its potential for industrial applications.
苯酚是一种具有高生物毒性的有机污染物,广泛存在于石化和焦化厂等行业的碱性废水中。然而,利用现有技术对其进行高效降解仍具有挑战性。在本研究中,通过涂层法制备了RuO-IrO@Ti电极,其析氧电位相对于可逆氢电极(RHE)为2.0V。在碱性条件(pH = 10)下,通过优化操作参数(电流密度为38 mA/cm²和0.25 M NaCl电解液),125 mg/L苯酚在180分钟内的降解效率达到92.33%。机理研究包括自由基猝灭实验、中间体的气相色谱-质谱(GC-MS)分析以及基于福井函数的反应位点分析,证实间接氧化主导了降解过程。主要降解途径包括次氯酸根(ClO)的亲电取代反应,并通过超氧自由基(O₂⁻)的氧化作用协同增强。该电极表现出出色的稳定性,连续30个循环后降解效率保持在90%,同时电化学活性表面积(ECSA)从0.17 cm²增加到0.44 cm²,表明其具有工业应用潜力。