Chen Jianhong, Zhang Boye, Cao Zhongzhi, Yang Li, Yuan Ye
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
PeerJ. 2025 Aug 11;13:e19731. doi: 10.7717/peerj.19731. eCollection 2025.
BACKGROUND: Recent research underscores the critical role of uric acid (UA) in the pathogenesis and progression of various diseases. However, the effects of polyphenolic compounds on uric acid levels remain poorly defined. OBJECTIVE: This review aims to assess the impact of five specific polyphenolic compounds on uric acid levels in animal models. METHODOLOGY: We performed an exhaustive literature search through October 30, 2024, utilizing databases including Wanfang, VIP, Cochrane Library, CNKI, Embase, and PubMed. The methodological quality of the included animal studies was evaluated using the SYRCLE (Systematic Review Centre for Laboratory animal Experimentation) risk of bias tool. Data analysis was conducted using R software, with meta-analyses performed RevMan 5.3, adhering to the Cochrane Handbook for Systematic Reviews of Interventions. RESULTS: Our analysis integrated data from 49 studies, revealing that the selected polyphenolic compounds significantly lowered serum uric acid (SUA) levels across various animal models (standardized mean difference (SMD) = -2.33, 95% CI [-2.73, -1.93]) and increased urinary uric acid (UUA) levels (SMD = 2.53, 95% CI [1.38, 3.69]). Subgroup analyses demonstrated consistent SUA reduction across different disease models. Detailed meta-analyses for each polyphenol disclosed distinct contributions to SUA reduction: resveratrol (RES) (SMD = -1.86, 95% confidence interval (CI) [-2.28, -1.45]), chlorogenic acid (CGA) (SMD = -2.31, 95% CI [-2.89, -1.73]), ferulic acid (FA) (SMD = -2.82, 95% CI [-4.46, -1.19]), punicalagin (PU) (SMD = -3.87, 95% CI [-5.99, -1.75]), and bergenin (BER) (SMD = -8.51, 95% CI [-10.30, -6.73]). CONCLUSION: This meta-analysis supports the proposition that polyphenols such as RES, CGA, FA, PU, and BER effectively reduce serum uric acid in animal models. Notably, RES exhibited an inverted U-shaped nonlinear trend. However, the high heterogeneity and methodological constraints, including small sample sizes, ambiguous randomization practices, and potential publication bias, necessitate cautious interpretation. Further high-quality research is essential to substantiate these findings and facilitate their translation into clinical practice.
背景:近期研究强调了尿酸(UA)在各种疾病的发病机制和进展中的关键作用。然而,多酚类化合物对尿酸水平的影响仍不明确。 目的:本综述旨在评估五种特定多酚类化合物对动物模型中尿酸水平的影响。 方法:我们通过2024年10月30日进行了详尽的文献检索,使用的数据库包括万方、维普、Cochrane图书馆、中国知网、Embase和PubMed。使用SYRCLE(实验动物实验系统评价中心)偏倚风险工具评估纳入动物研究的方法学质量。使用R软件进行数据分析,使用RevMan 5.3进行荟萃分析,遵循Cochrane干预措施系统评价手册。 结果:我们的分析整合了49项研究的数据,表明所选多酚类化合物在各种动物模型中显著降低了血清尿酸(SUA)水平(标准化均数差(SMD)=-2.33,95%置信区间[CI][-2.73,-1.93]),并增加了尿尿酸(UUA)水平(SMD=2.53,95%CI[1.38,3.69])。亚组分析表明,不同疾病模型中SUA均有一致降低。对每种多酚的详细荟萃分析揭示了对SUA降低的不同贡献:白藜芦醇(RES)(SMD=-1.86,95%置信区间[CI][-2.28,-1.45])、绿原酸(CGA)(SMD=-2.31,95%CI[-2.89,-1.73])、阿魏酸(FA)(SMD=-2.82,95%CI[-4.46,-1.19])、石榴皮素(PU)(SMD=-3.87,95%CI[-5.99,-1.75])和岩白菜素(BER)(SMD=-8.51,95%CI[-10.30,-6.73])。 结论:这项荟萃分析支持了RES、CGA、FA、PU和BER等多酚类化合物可有效降低动物模型血清尿酸的观点。值得注意的是,RES呈现出倒U形非线性趋势。然而,高异质性和方法学限制,包括样本量小、随机化方法不明确以及潜在的发表偏倚,需要谨慎解释。进一步的高质量研究对于证实这些发现并促进其转化为临床实践至关重要。
Cochrane Database Syst Rev. 2016-3-23
Cochrane Database Syst Rev. 2015-9-14
Cochrane Database Syst Rev. 2023-6-14
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2017-10-30
Cochrane Database Syst Rev. 2024-10-9
J Sci Food Agric. 2025-9
Int J Biol Macromol. 2023-12-31