Feng Wang, Mo Songlin, Wang Ting, Li Hongxiang, Chen JianHua
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Angew Chem Int Ed Engl. 2025 Aug 18:e202512395. doi: 10.1002/anie.202512395.
The water molecule is regarded as a double-edged sword in organic mixed ionic-electronic conductors (OMIECs), particularly for n-type semiconductors. On the one hand, hydration facilitates ion transport within OMIECs; on the other hand, water acts as an electron trap, capturing electrons in n-type materials. Excessive hydration may disrupt the continuity of OMIECs crystalline domains, leading to device degradation. To address these challenges, we propose an innovative strategy by incorporating perfluoroalkyl hybridized ethylene glycol (fag) side chains into the polymer. The strong hydrophobicity of fluoroalkyl segments effectively repels water from polymer backbone, thereby reducing electron trapping. Meanwhile, the ethylene glycol components facilitate efficient ion transport. These findings are confirmed by electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). Additionally, the electron-withdrawing nature of fluorine lowers the lowest unoccupied molecular orbital (LUMO) energy level, which in turn enhances stability in aqueous environments. We also discovered that the incorporation of fag side chains also promotes polymer self-assembly and improves crystallinity. Grazing-incidence wide-angle X-ray scattering (GIWAXS) reveals a face-on/edge-on mixed orientation in fag-based polymers, facilitating efficient ion-electron transport. Consequently, organic electrochemical transistors (OECTs) fabricated from fag-based OMIECs demonstrate state-of-the-art n-type performance, achieving a µC* figure of merit of 189.78 F cm V s. Furthermore, they exhibit excellent stability, retaining 68% of their initial performance after 50 000 switching cycles in aqueous electrolyte. This study demonstrates that a rational approach to molecular design can effectively alleviate the detrimental effects of water, providing a novel strategy for the development of high-performance and stable n-type OMIECs.
在有机混合离子 - 电子导体(OMIECs)中,水分子被视为一把双刃剑,尤其是对于n型半导体而言。一方面,水合作用有助于OMIECs内部的离子传输;另一方面,水充当电子陷阱,在n型材料中捕获电子。过度水合可能会破坏OMIECs晶体域的连续性,导致器件性能下降。为应对这些挑战,我们提出了一种创新策略,即将全氟烷基杂化乙二醇(fag)侧链引入聚合物中。氟烷基链段的强疏水性有效地将水从聚合物主链排斥,从而减少电子捕获。同时,乙二醇成分促进了高效的离子传输。这些发现通过电化学阻抗谱(EIS)和带耗散监测的电化学石英晶体微天平(EQCM - D)得到证实。此外,氟的吸电子性质降低了最低未占据分子轨道(LUMO)能级,进而增强了在水性环境中的稳定性。我们还发现,引入fag侧链还促进了聚合物的自组装并提高了结晶度。掠入射广角X射线散射(GIWAXS)揭示了基于fag的聚合物中面内/面外混合取向,有利于高效的离子 - 电子传输。因此,由基于fag的OMIECs制成的有机电化学晶体管(OECTs)展现出了最先进的n型性能,实现了189.78 F cm V s的µC*品质因数。此外,它们表现出优异的稳定性,在水性电解质中经过50000次开关循环后仍保留其初始性能的68%。这项研究表明,合理的分子设计方法可以有效减轻水的有害影响,为开发高性能和稳定的n型OMIECs提供了一种新策略。