Suppr超能文献

肾嫌色细胞癌的个性化生存预测:基于机器学习的网络工具的开发

Personalized survival predictions in chromophobe renal cell carcinoma: development of a machine learning-based web tool.

作者信息

Alshwayyat Sakhr, Almasri Noor, Alshwaiyat Yamen, Alshwayyat Tala Abdulsalam, AlAwwa Rewa, Alshwayyat Mustafa, Jamaan Madhawi Hadi, Alhamadi Muneera Ahmad, Mahfouz Ratib, Alshwayat Anas, Al-Kurdi Mohammed Al-Mahdi

机构信息

Kern Medical (UCLA David Geffen School of Medicine Affiliate), Bakersfield, CA, USA.

King Hussein Cancer Center, Amman, Jordan.

出版信息

Int Urol Nephrol. 2025 Aug 18. doi: 10.1007/s11255-025-04718-5.

Abstract

PURPOSE

Chromophobe renal cell carcinoma (ChRCC) is a rare subtype of renal cancer, characterized by distinct clinical and genetic features. Existing studies on ChRCC are limited, and there is a critical need to explore the prognostic factors and treatment outcomes in this patient population. We used machine learning (ML) to build prognostic models and developed the first predictive web-based tool for survival.

METHODS

The SEER database (2000-2020) was used for this study's analysis. To identify the prognostic variables, we conducted Cox regression analysis and constructed prognostic models using five ML algorithms to predict the 5-year survival. A validation method incorporating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to validate the accuracy and reliability of ML models. We also performed Kaplan-Meier survival analysis.

RESULTS

Our study analyzed 10,700 patients with ChRCC and identified metastasis and tumor size as significant predictors of survival. Subtotal nephrectomy was associated with the highest survival rates. Chemotherapy and radiotherapy were infrequently used but were associated with worse survival outcomes, particularly in patients with metastasis. The developed ML models demonstrated high accuracy in predicting survival, and a web-based tool offered real-time survival predictions based on patient-specific data.

CONCLUSION

Our study identified key prognostic factors and developed a machine learning-based web tool for personalized survival predictions. Metastasis and tumor size are critical in determining patient outcomes, with subtotal nephrectomy showing the highest survival rate.

摘要

目的

嫌色细胞肾细胞癌(ChRCC)是一种罕见的肾癌亚型,具有独特的临床和遗传特征。现有关于ChRCC的研究有限,迫切需要探索该患者群体的预后因素和治疗结果。我们使用机器学习(ML)构建预后模型,并开发了首个基于网络的生存预测工具。

方法

本研究分析使用监测、流行病学和最终结果(SEER)数据库(2000 - 2020年)。为了确定预后变量,我们进行了Cox回归分析,并使用五种ML算法构建预后模型以预测5年生存率。采用一种结合受试者工作特征(ROC)曲线下面积(AUC)的验证方法来验证ML模型的准确性和可靠性。我们还进行了Kaplan - Meier生存分析。

结果

我们的研究分析了10700例ChRCC患者,确定转移和肿瘤大小是生存的重要预测因素。肾部分切除术与最高生存率相关。化疗和放疗使用较少,但与较差的生存结果相关,尤其是在有转移的患者中。所开发的ML模型在预测生存方面显示出高准确性,并且一个基于网络的工具可根据患者的特定数据提供实时生存预测。

结论

我们的研究确定了关键的预后因素,并开发了一种基于机器学习的网络工具用于个性化生存预测。转移和肿瘤大小在决定患者预后方面至关重要,肾部分切除术的生存率最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验