Kim Jungryun, Lee Yubin, Kim Yuri, Rha Hyeonji, Kim Dongeun, Debnath Snehasish, Pu Kanyi, Kang Heemin, Kim Jong Seung
Department of Chemistry, Korea University, Seoul 02841, Korea.
Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
Chem Rev. 2025 Sep 24;125(18):9012-9052. doi: 10.1021/acs.chemrev.5c00297. Epub 2025 Aug 21.
Tumor heterogeneity and complex morphologies pose significant challenges to achieving efficient therapeutic outcomes. However, the recent advent of remote-controlled transformable nanostructures has introduced a novel approach to cancer therapy, enabling precise size, shape, and phase changes in nanoparticles in response to external stimuli, such as light, ultrasound, and magnetic fields. These materials offer noninvasive strategies to effectively navigate the dynamic and complex morphologies of tumors, providing unprecedented control over therapeutic targeting and precision in patient-tailored treatments. The real-time modulation of nanomaterial structures optimizes interactions with the tumor microenvironment, improving circulation, endothelial permeation, deep tumor penetration, and subcellular targeting. This review discusses cutting-edge strategies to remotely control the morphology of nanomaterials, emphasizing their integration into modular cancer theranostic platforms. These systems are engineered to target cancer cell membrane receptors and cytoplasm, subcellular organelles, immune cells, and difficult-to-reach areas including the blood-brain barrier and deep-seated tumors. We also explore the potential of multimodal theranostics including dual-triggered, combinatorial, and synergistic therapies that combine therapeutic action with real-time imaging guidance. This review presents a clear and insightful roadmap, unveiling how these cutting-edge advancements open new horizons for adaptive, personalized therapies with exceptional potential to overcome the complexities of metastatic tumor treatment and advance clinical translation.
肿瘤异质性和复杂形态对实现有效的治疗效果构成了重大挑战。然而,近年来遥控可变形纳米结构的出现为癌症治疗引入了一种新方法,使纳米颗粒能够根据光、超声和磁场等外部刺激精确改变大小、形状和相态。这些材料提供了非侵入性策略,以有效应对肿瘤动态和复杂的形态,为治疗靶向和个性化治疗的精准度提供了前所未有的控制。纳米材料结构的实时调制优化了与肿瘤微环境的相互作用,改善了循环、内皮渗透、肿瘤深部渗透和亚细胞靶向。本文综述了远程控制纳米材料形态的前沿策略,强调了它们在模块化癌症诊疗平台中的整合。这些系统被设计用于靶向癌细胞膜受体、细胞质、亚细胞器、免疫细胞以及包括血脑屏障和深部肿瘤在内的难以到达的区域。我们还探讨了多模态诊疗的潜力,包括双触发、联合和协同疗法,将治疗作用与实时成像引导相结合。本文综述提供了一个清晰而有见地的路线图,揭示了这些前沿进展如何为适应性、个性化治疗开辟新的视野,具有克服转移性肿瘤治疗复杂性和推进临床转化的巨大潜力。