Jia Beixi, Zhou Siyuan, Liu Mengyang, Zhang Mengyao, Jiang Xinyue, Guo Xueyang, Bi Yuefeng
Department of Pharmacognosy, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
Department of Pharmacognosy, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
Free Radic Biol Med. 2025 Aug 19;240:153-169. doi: 10.1016/j.freeradbiomed.2025.08.032.
Rheumatoid arthritis (RA), a chronic autoimmune disease, requires novel therapeutic targets. Ferroptosis, an iron-dependent form of regulated cell death, is closely linked to RA pathogenesis through its mediation of inflammation, oxidative stress, and lipid peroxidation. ALOX5, a member of the lipoxygenase family, is an important regulator of ferroptosis. Inhibiting ALOX5-dependent ferroptosis in joint synovial tissue may thus offer a potential therapeutic strategy for RA. Natural compound 6-C-Methylquercetin possesses robust anti-inflammatory and antioxidant properties, and network pharmacology identifies ALOX5 as its key target against RA. This study aimed to elucidate the pathogenic roles of ALOX5-mediated ferroptosis in RA and evaluate the therapeutic potential of 6-C-methylquercetin. Through in vivo and in vitro experiments, ALOX5 overexpression in RA fibroblast-like synoviocytes (FLSs) was shown to activate ferroptosis, characterized by elevated levels of MDA, lipid ROS, ROS, Fe, ACSL3, NOX1, and COX2, alongside reduced GSH/GSSG ratio and GPX4 expression. Conversely, 6-C-methylquercetin ameliorated RA progression by targeting ALOX5 to disrupt the ALOX5-COTL1 interaction, inhibit aberrant PI3K/AKT pathway activation, and consequently suppress ferroptosis and pro-inflammatory cytokine secretion in FLSs. Further molecular computational simulations, surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA) validated ALOX5 as a direct target of 6-C-methylquercetin, and high-affinity binding was achieved through the B-ring C4'-hydroxyl group of 6-C-methylquercetin, forming a hydrogen-bond network with amino acid residue (ARG411) in the ALOX5 active site. In the collagen-induced arthritis (CIA) mouse model, 6-C-methylquercetin effectively alleviated synovial inflammation and ankle joint damage, reconfirmed its inhibitory effect on ferroptosis, and demonstrated favorable in vivo biosafety. These findings establish ALOX5-driven ferroptosis as a novel therapeutic target for RA, while 6-C-methylquercetin demonstrates dual anti-ferroptotic and anti-inflammatory efficacy through specific ALOX5 inhibition, highlighting its translational promise.
类风湿性关节炎(RA)是一种慢性自身免疫性疾病,需要新的治疗靶点。铁死亡是一种铁依赖性的程序性细胞死亡形式,通过介导炎症、氧化应激和脂质过氧化与RA发病机制密切相关。脂氧合酶家族成员ALOX5是铁死亡的重要调节因子。因此,抑制关节滑膜组织中依赖ALOX5的铁死亡可能为RA提供一种潜在的治疗策略。天然化合物6-C-甲基槲皮素具有强大的抗炎和抗氧化特性,网络药理学确定ALOX5是其抗RA的关键靶点。本研究旨在阐明ALOX5介导的铁死亡在RA中的致病作用,并评估6-C-甲基槲皮素的治疗潜力。通过体内和体外实验表明,RA成纤维样滑膜细胞(FLS)中ALOX5过表达可激活铁死亡,其特征是丙二醛(MDA)、脂质活性氧(ROS)、ROS、铁、酰基辅酶A合成酶长链家族成员3(ACSL3)、NADPH氧化酶1(NOX1)和环氧化酶2(COX2)水平升高,同时谷胱甘肽(GSH)/氧化型谷胱甘肽(GSSG)比值降低和谷胱甘肽过氧化物酶4(GPX4)表达减少。相反,6-C-甲基槲皮素通过靶向ALOX5破坏ALOX5与卷曲螺旋蛋白1(COTL1)的相互作用,抑制异常的磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)途径激活,从而抑制FLS中的铁死亡和促炎细胞因子分泌,改善RA进展。进一步的分子计算模拟、表面等离子体共振(SPR)和细胞热位移分析(CETSA)验证了ALOX5是6-C-甲基槲皮素的直接靶点,6-C-甲基槲皮素通过其B环C4'-羟基实现高亲和力结合,与ALOX5活性位点的氨基酸残基(精氨酸411)形成氢键网络。在胶原诱导的关节炎(CIA)小鼠模型中,6-C-甲基槲皮素有效减轻滑膜炎症和踝关节损伤,再次证实其对铁死亡的抑制作用,并显示出良好的体内生物安全性。这些发现确立了ALOX5驱动的铁死亡作为RA的一个新的治疗靶点,而6-C-甲基槲皮素通过特异性抑制ALOX5表现出双重抗铁死亡和抗炎功效,突出了其转化应用前景。