Suppr超能文献

长期护理机构入住后痴呆症患者发生谵妄或痴呆相关住院的风险:基于人群的风险预测模型。

The risk of delirium or dementia-related hospitalization among individuals living with dementia after long-term care entry: A population-based risk prediction model.

作者信息

Eshetie Tesfahun C, Caughey Gillian E, Lang Catherine, Whitehead Craig, Crotty Maria, Corlis Megan, Visvanathan Renuka, Inacio Maria C

机构信息

Registry of Senior Australians Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.

Registry of Senior Australians Research Centre, Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, Australia.

出版信息

Alzheimers Dement. 2025 Aug;21(8):e70487. doi: 10.1002/alz.70487.

Abstract

INTRODUCTION

Identifying individuals with dementia in long-term care facilities (LTCFs) at risk for delirium or dementia-related hospitalizations can support individualized risk mitigation.

METHODS

Using the Registry of Senior Australians (ROSA) Historical National Cohort (N = 207343 individuals with dementia in 2655 LTCFs), we identified predictors of delirium or dementia-related hospitalization within 365 days of LTCF entry and developed a risk prediction model using elastic net penalized regression and Fine-Gray model. Model discrimination using area under the receiver operating characteristics curve (AUC), calibration and clinical utility were assessed.

RESULTS

Within 365 days, 5.2% (N = 10709) of individuals had a delirium or dementia-related hospitalization. Forty predictors were identified, strongest included history of frequent emergency department presentations, physical violence history, being male, and prior delirium. Model AUC was 0.664 (95% confidence interval: 0.650-0.676) with reasonable calibration.

DISCUSSION

Our risk prediction model for delirium or dementia-related hospitalizations had moderate discrimination with reasonable calibration and clinical utility. Routinely collected data can inform risk profiling in LTCFs.

HIGHLIGHTS

Using a large population-based cohort of people living with dementia, we developed a risk prediction model for delirium or dementia-related hospitalization within 365 days of long-term care facility (LTCF) entry. Within 365 days after entry into LTCF, 5.2% of individuals living with dementia had a delirium or dementia-related hospitalization. The model demonstrated moderate discriminatory performance (area under the curve [AUC] = 0.664, 95% confidence interval [CI]: 0.650-0.676) and reasonable calibration in predicting delirium or dementia-related hospitalization risk. Our model showed net benefits within 2%-22% risk threshold ranges assessed via decision curve analysis . Risk stratification at LTCF entry may support clinicians and aged care providers in identifying high risk individuals and implementing targeted interventions to reduce delirium or dementia-related hospitalizations .

摘要

引言

识别长期护理机构(LTCF)中存在谵妄或与痴呆相关住院风险的痴呆患者,有助于采取个性化的风险缓解措施。

方法

利用澳大利亚老年人登记册(ROSA)历史全国队列(2655个LTCF中的207343名痴呆患者),我们确定了LTCF入院365天内谵妄或与痴呆相关住院的预测因素,并使用弹性网惩罚回归和Fine-Gray模型开发了一个风险预测模型。评估了使用受试者工作特征曲线下面积(AUC)的模型辨别力、校准和临床实用性。

结果

在365天内,5.2%(N = 10709)的患者发生了谵妄或与痴呆相关的住院。确定了40个预测因素,其中最强的包括频繁急诊就诊史、身体暴力史、男性以及既往谵妄。模型AUC为0.664(95%置信区间:0.650 - 0.676),校准合理。

讨论

我们针对谵妄或与痴呆相关住院的风险预测模型具有中等辨别力,校准合理且具有临床实用性。常规收集的数据可为LTCF中的风险评估提供参考。

要点

利用一个基于大量痴呆患者的队列,我们开发了一个在长期护理机构(LTCF)入院365天内谵妄或与痴呆相关住院的风险预测模型。在进入LTCF后的365天内,5.2%的痴呆患者发生了谵妄或与痴呆相关的住院。该模型在预测谵妄或与痴呆相关住院风险方面表现出中等辨别性能(曲线下面积[AUC] = 0.664,95%置信区间[CI]:0.650 - 0.676)且校准合理。通过决策曲线分析评估,我们的模型在2% - 22%的风险阈值范围内显示出净效益。LTCF入院时的风险分层可能有助于临床医生和老年护理提供者识别高危个体,并实施有针对性的干预措施以减少谵妄或与痴呆相关的住院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/089e/12371554/92a19cfbe6eb/ALZ-21-e70487-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验