Huang Shijian, Gao Yi, Chen Ting, Pei Xinyuan, Sun Panpan, Lv Xiaowei, Sun Xiaohua, Liu Enzuo, Zhou Hui, Zhao Naiqin
College of Materials and Chemical Engineering, College of Mechanical and Power Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.
Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, China.
Small. 2025 Aug 22:e06727. doi: 10.1002/smll.202506727.
Zinc-air batteries (ZABs) operating in gas-solid-liquid three-phase systems suffer from sluggish reaction kinetics and low power output, which severely hinder their commercialization. To address these challenges, an integrated strategy is proposed combining core-shell heterophase catalytic species with superhydrophobic properties. The H─CoFe─CNT catalyst, featuring carbon nanotube-grown hollow cubic carbon cages, incorporates metal carbide@metal core-shell heterophase catalytic species and exhibits superhydrophobicity. The metal carbide@metal core-shell structure modulates the electronic state of catalytic sites, reduces the oxygen reduction reaction (ORR) energy barrier, and enhances catalytic activity. Meanwhile, the superhydrophobic property of the catalyst creates an abundant triple-phase reaction interface, promotes oxygen accumulation at the air cathode, thereby improving ORR kinetics and boosting the power density of ZABs. The as-prepared H─CoFe─CNT catalyst demonstrates exceptional oxygen electrocatalytic activity, achieving a high ORR half-wave potential of 0.909 V and a low oxygen evolution reaction (OER) overpotential of 307 mV. Liquid ZABs assembled with this catalyst exhibit a peak power density of 255 mW cm, and outstanding durability. Moreover, quasi-solid-state ZABs deliver an ultrahigh peak power density of 610 mW cm, indicating promising practical applicability. This work opens a new avenue for developing high-power-density ZABs through the synergistic integration of core-shell heterophase catalytic species and superhydrophobic engineering.
在气-固-液三相系统中运行的锌空气电池(ZABs)存在反应动力学迟缓、功率输出低的问题,这严重阻碍了它们的商业化进程。为应对这些挑战,提出了一种将具有超疏水特性的核壳异相催化物种相结合的综合策略。具有在碳纳米管上生长的中空立方碳笼的H─CoFe─CNT催化剂,包含金属碳化物@金属核壳异相催化物种,并表现出超疏水性。金属碳化物@金属核壳结构调节催化位点的电子状态,降低氧还原反应(ORR)的能垒,并提高催化活性。同时,催化剂的超疏水特性创造了丰富的三相反应界面,促进了空气阴极处的氧气积累,从而改善了ORR动力学并提高了ZABs的功率密度。所制备的H─CoFe─CNT催化剂表现出优异的氧电催化活性,实现了0.909 V的高ORR半波电位和307 mV的低析氧反应(OER)过电位。用这种催化剂组装的液体ZABs表现出255 mW cm的峰值功率密度和出色的耐久性。此外,准固态ZABs提供了610 mW cm的超高峰值功率密度,表明其具有广阔的实际应用前景。这项工作通过核壳异相催化物种与超疏水工程的协同整合,为开发高功率密度的ZABs开辟了一条新途径。