Suppr超能文献

火龙果(Hylocereus hybridum)果实的植物化学成分及抗氧化特性:通过化学分级法进行阐释

Phytochemical and Antioxidant Profile of Pitaya (Hylocereus hybridum) Fruits: Elucidation Through Chemical Fractionation.

作者信息

Gatti Noemi, Serio Graziella, Morante-Carriel Jaime, Deusebio Pietro, Conti Giulia, Eva Campo, Maghrebi Moez, Gentile Carla, Mannino Giuseppe

机构信息

Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy.

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy.

出版信息

J Food Sci. 2025 Aug;90(8):e70502. doi: 10.1111/1750-3841.70502.

Abstract

The increasing global demand for diverse and health-promoting foods has led to the expansion of tropical fruit cultivation beyond their native regions, notably into the Mediterranean area. This shift necessitates a deeper understanding of their phytochemical profiles, as environmental factors in new cultivation contexts can significantly influence the biosynthesis of their bioactive compounds. In this study, we explored the phytochemical and antioxidant properties of pitaya fruit, focusing on chemical fractionation and the link between its bioactive components and functional benefits. Using HPLC-DAD-MS/MS, key compounds contributing to the fruit's antioxidant effects were identified. The total polyphenol content (TPC) in the original pitaya extract was 670.57 ± 15.98 mg 100 g of FW. Both in vitro (ABTS, DPPH, and FRAP) and the cellular antioxidant activity (CAA) assay demonstrated a dose-dependent prevention of oxidative damage, with 50% inhibition (IC) observed at 2.365 ± 0.072 µg/mL for ABTS, 20.797 ± 0.950 µg/mL for DPPH, and 7.28 ± 0.050 µg/mL for the CAA assay. Additionally, the DNA protection assay revealed that pitaya extract significantly reduced oxidative damage caused by HO and UV exposure, with a significant reduction in damage at the lowest tested concentration (100 µg/mL). Following chromatographic fractionation via flash chromatography, the fraction enriched in betacyanin (F2), and betaxanthine (F3) exhibited the strongest antioxidant effects on in solution-based assays. Interestingly, the flavonoid-rich fractions (F5 and F7), despite showing lower activity in these solution assays, provided nearly complete protection in cell-based biological models, raising the possibility that additional, and/or complementary antioxidant mechanisms could be involved. These findings underscore the potential of pitaya fruit as a valuable natural source of antioxidants for nutraceutical and therapeutic applications aimed at counteracting oxidative stress and related pathologies. PRACTICAL APPLICATIONS: 1. Betalains, in the F2 fraction, play a key role in the antioxidant potential of pitaya fruit. 2. DPPH and ABTS assays rank pitaya among the fruits with high antioxidant potential. 3. Pitaya fruit extract preserves up to 90% of DNA integrity against oxidative insults. 4. 80% of detected bioactive compounds were betalains and 20% were flavonoids.

摘要

全球对多样化且有益健康的食品需求不断增加,促使热带水果的种植范围从原生地区向外扩展,特别是扩展到了地中海地区。这一转变需要我们更深入地了解它们的植物化学特征,因为新种植环境中的环境因素会显著影响其生物活性化合物的生物合成。在本研究中,我们探究了火龙果果实的植物化学和抗氧化特性,重点关注化学分离以及其生物活性成分与功能益处之间的联系。通过高效液相色谱 - 二极管阵列 - 串联质谱法(HPLC - DAD - MS/MS),确定了对果实抗氧化作用有贡献的关键化合物。原始火龙果提取物中的总多酚含量(TPC)为670.57±15.98毫克/100克鲜重。体外(ABTS、DPPH和FRAP)和细胞抗氧化活性(CAA)测定均表明,其对氧化损伤的预防呈剂量依赖性,ABTS在2.365±0.072微克/毫升、DPPH在20.797±0.950微克/毫升、CAA测定在7.28±0.050微克/毫升时观察到50%抑制(IC)。此外,DNA保护测定表明,火龙果提取物显著降低了由羟基自由基(HO)和紫外线暴露引起的氧化损伤,在最低测试浓度(100微克/毫升)时损伤显著减少。通过快速色谱进行色谱分离后,富含甜菜色素(F2)和甜菜碱(F3)的馏分在基于溶液的测定中表现出最强的抗氧化作用。有趣的是,富含黄酮类化合物的馏分(F5和F7),尽管在这些溶液测定中活性较低,但在基于细胞的生物学模型中提供了几乎完全的保护,这增加了可能涉及其他和/或互补抗氧化机制的可能性。这些发现强调了火龙果果实作为抗氧化剂宝贵天然来源的潜力,可用于营养保健和治疗应用,以对抗氧化应激及相关病症。实际应用:1. F2馏分中的甜菜素在火龙果果实的抗氧化潜力中起关键作用。2. DPPH和ABTS测定将火龙果列为具有高抗氧化潜力的水果之一。3. 火龙果果实提取物可使DNA完整性在氧化损伤下保持高达90%。4. 检测到的生物活性化合物中80%是甜菜素,20%是黄酮类化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba0/12371859/14392ea5f9e1/JFDS-90-0-g002.jpg

相似文献

2
Unveiling the ethnomedicinal potential of Alchemilla speciosa Buser: An underexplored source of bioactive compounds for skin health.
J Ethnopharmacol. 2025 Jul 24;351:120068. doi: 10.1016/j.jep.2025.120068. Epub 2025 May 30.
3
Phytochemical composition and bioactivity of Debregeasia saeneb leaves: Insights into anti-diabetic and antioxidant properties.
PLoS One. 2025 Jul 2;20(7):e0326991. doi: 10.1371/journal.pone.0326991. eCollection 2025.
4
Phytochemical Screening and Biological Activities of Moldenke.
Molecules. 2025 Jul 7;30(13):2882. doi: 10.3390/molecules30132882.
5
Insoluble-bound phenolics from calafate byproducts: Impact on redox status and oxidative protection in Caco-2 cells.
Food Res Int. 2025 Oct;218:116878. doi: 10.1016/j.foodres.2025.116878. Epub 2025 Jun 19.
6
Antioxidant Effects of Moringa oleifera Against Abamectin-Induced Oxidative Stress in the Brain and Erythrocytes of Rats.
Chem Biodivers. 2025 May;22(5):e202402709. doi: 10.1002/cbdv.202402709. Epub 2025 Jan 7.

本文引用的文献

2
Antioxidant Activity of Foods and Natural Products.
Molecules. 2024 Apr 17;29(8):1814. doi: 10.3390/molecules29081814.
4
Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements.
Plants (Basel). 2023 Sep 8;12(18):3212. doi: 10.3390/plants12183212.
5
Pitaya Nutrition, Biology, and Biotechnology: A Review.
Int J Mol Sci. 2023 Sep 12;24(18):13986. doi: 10.3390/ijms241813986.
6
Natural Compounds and Glutathione: Beyond Mere Antioxidants.
Antioxidants (Basel). 2023 Jul 18;12(7):1445. doi: 10.3390/antiox12071445.
7
Anti-Amyloid β Aggregation Activity and Cell Viability Effect of Betacyanins from Red Pitahaya (Hylocereus polyrhizus) for Alzheimer's Disease.
Plant Foods Hum Nutr. 2023 Sep;78(3):613-619. doi: 10.1007/s11130-023-01081-7. Epub 2023 Jul 19.
9
Measuring DNA modifications with the comet assay: a compendium of protocols.
Nat Protoc. 2023 Mar;18(3):929-989. doi: 10.1038/s41596-022-00754-y. Epub 2023 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验