Tan Nguyen Duy, Huy Tran Phuong, Thuy Tran Thi Thanh, Tuyet Hoang Thi Diem, Son Dang Truong, Bao Pham The, Sang Vu Ngoc Thanh
IC-IP Lab, Faculty of Information and Technology, Saigon University, Ho Chi Minh City, 70000, Viet Nam.
Infertility Department, Hung Vuong Hospital, Ho Chi Minh City, 70000, Viet Nam.
Comput Biol Med. 2025 Sep;196(Pt C):110872. doi: 10.1016/j.compbiomed.2025.110872. Epub 2025 Aug 21.
Morphological evaluation of Day 3 embryos in vitro fertilization (IVF) is critical for selecting viable embryos for transfer but is hindered by subjectivity and variability in manual grading. Inter-observer and intra-observer inconsistencies, coupled with the limitations of two-dimensional imaging, compromise the accuracy of cell counting and uniformity assessment.
This study proposes a hybrid approach integrating deep learning and image processing techniques to enhance and standardize evaluation processes, focusing on improving accuracy in cell counting and cell uniformity assessment. The extraction of blastomere boundaries is conducted using an active contour model to enhance the initial elliptical boundary coordinates surrounding the blastomere, which are identified and localized by the YOLOv8 object detection model. To enhance the precision of contour refinement in a noisy environment with intricate edge textures, Gradient Vector Flow (GVF) is utilized to standardize the gradient field within the embryo, leading to improved convergence of the active contour. Subsequently, the Normalized Uniformity Value (NUV) is calculated to evaluate variability in cell sizes, offering an objective metric for assessing developmental uniformity.
The hybrid model effectively handles complex imaging scenarios, including overlapping cells and low-contrast conditions. YOLOv8 delivers precise cell counting, while GVF-snake ensures accurate boundary delineation and spatial measurements. NUV offers a robust metric for consistent and reliable embryo grading, significantly enhancing decision-making in embryo selection.
In summary, our main contributions are: (1) We develop a hybrid model integrating YOLOv8 for precise blastomere detection with GVF-snake for accurate boundary refinement, enhancing embryo grading accuracy. (2) We reduce subjectivity and variability in embryo evaluation by combining deep learning with image processing, addressing key challenges in manual grading. (3) We introduce the NUV as a quantitative metric for assessing cell uniformity, providing a standardized approach to improve IVF decision-making.
体外受精(IVF)第3天胚胎的形态学评估对于选择可移植的存活胚胎至关重要,但受到主观因素和人工评分变异性的阻碍。观察者间和观察者内的不一致性,再加上二维成像的局限性,影响了细胞计数和均匀性评估的准确性。
本研究提出了一种将深度学习和图像处理技术相结合的混合方法,以加强和规范评估过程,重点提高细胞计数和细胞均匀性评估的准确性。使用主动轮廓模型提取卵裂球边界,以增强围绕卵裂球的初始椭圆边界坐标,这些坐标由YOLOv8目标检测模型识别和定位。为了在具有复杂边缘纹理的噪声环境中提高轮廓细化的精度,利用梯度向量流(GVF)对胚胎内的梯度场进行标准化,从而改善主动轮廓的收敛性。随后,计算归一化均匀度值(NUV)以评估细胞大小的变异性,为评估发育均匀性提供一个客观指标。
混合模型有效地处理了复杂的成像场景,包括细胞重叠和低对比度条件。YOLOv8实现了精确的细胞计数,而GVF-snake确保了准确的边界描绘和空间测量。NUV为一致可靠的胚胎分级提供了一个强大的指标,显著增强了胚胎选择中的决策。
总之,我们的主要贡献是:(1)我们开发了一种混合模型,将用于精确卵裂球检测的YOLOv8与用于精确边界细化的GVF-snake相结合,提高了胚胎分级的准确性。(2)我们通过将深度学习与图像处理相结合,减少了胚胎评估中的主观性和变异性,解决了人工评分中的关键挑战。(3)我们引入NUV作为评估细胞均匀性的定量指标,提供了一种标准化方法来改进IVF决策。