Francavilla Fabio, Vitone Daniele, Schepetkin Igor A, Kirpotina Lilya N, Carrieri Antonio, Brunetti Leonardo, Ghafir El Idrissi Imane, Perrone Maria Grazia, Frydrych Jakub Kosma, Trojan Ewa, Quinn Mark T, Basta-Kaim Agnieszka, Lacivita Enza, Leopoldo Marcello
Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy.
Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States.
ACS Chem Neurosci. 2025 Sep 3;16(17):3292-3311. doi: 10.1021/acschemneuro.5c00308. Epub 2025 Aug 23.
Recent research reveals Formyl Peptide Receptor 2 (FPR2) as a relevant G Protein-Coupled Receptor involved in the resolution phase of inflammation. Therefore, FPR2 agonists are promising agents to tackle neuroinflammatory-based diseases, such as Alzheimer's Disease or Autism Spectrum Disorder. Here, we describe the synthesis and biological evaluation of novel FPR2 agonists designed through the bioisosteric replacement of the phenyl urea function in the potent FPR2 agonist (S)-1-(3-(4-cyanophenyl)-1-(indolin-1-yl)-1-oxopropan-2-yl)-3-(4-fluorophenyl)urea (), obtaining novel heteroaryl, squaramide, and indolcarboxamide derivatives. The structural modification had a profound effect on FPR2 agonist potency, metabolic stability, aqueous solubility, and cell permeability, resulting in compounds with distinct profiles. Computational studies have shown that the new compounds exhibit the same contacts with key amino acids in the binding site as the starting FPR2 agonist . However, subtle differences in the orientation or the presence and position of heteroatoms in the selected scaffolds translate to substantial differences in FPR2 potency. Among the new compounds, ()-, ()-, and ()- demonstrated neuroprotective, anti-inflammatory, and pro-resolving properties in mouse primary microglial cells, stimulated with lipopolysaccharide. Although the replacement of the phenyl urea with different scaffolds did not lead to the identification of a bioisostere, compounds ()-, ()-, and ()- represent a starting point for the development of a new class of FPR2 agonists.
最近的研究表明,甲酰肽受体2(FPR2)是一种参与炎症消退阶段的相关G蛋白偶联受体。因此,FPR2激动剂有望用于治疗基于神经炎症的疾病,如阿尔茨海默病或自闭症谱系障碍。在此,我们描述了通过对强效FPR2激动剂(S)-1-(3-(4-氰基苯基)-1-(吲哚啉-1-基)-1-氧代丙烷-2-基)-3-(4-氟苯基)脲()中的苯基脲功能进行生物电子等排体置换而设计的新型FPR2激动剂的合成及生物学评价,得到了新型杂芳基、方酰胺和吲哚甲酰胺衍生物。结构修饰对FPR2激动剂的效力、代谢稳定性、水溶性和细胞通透性产生了深远影响,产生了具有不同特性的化合物。计算研究表明,新化合物与起始FPR2激动剂在结合位点的关键氨基酸具有相同的接触。然而,所选支架中杂原子的取向或存在及位置的细微差异导致FPR2效力存在显著差异。在新化合物中,()-、()-和()-在脂多糖刺激的小鼠原代小胶质细胞中表现出神经保护、抗炎和促消退特性。尽管用不同支架取代苯基脲并未导致鉴定出生物电子等排体,但化合物()-、()-和()-代表了开发新型FPR2激动剂的起点。