Marino Miguélez M Henar, Osaid Mohammad, Hallström Erik, Kaya Kerem, Larsson Jimmy, Kandavalli Vinodh, Wählby Carolina, Elf Johan, van der Wijngaart Wouter
Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
Molecular Systems Biology, Uppsala University, Uppsala, Sweden.
NPJ Digit Med. 2025 Aug 25;8(1):544. doi: 10.1038/s41746-025-01948-w.
Approximately 50 million people suffer from sepsis yearly, and 13 million die from it. For every hour a patient with septic shock is untreated, their survival rate decreases by 8%. Therefore, rapid detection and antibiotic susceptibility profiling of bacterial agents in the blood of sepsis patients are crucial for determining appropriate treatment. Here, we introduce a method to isolate bacteria from whole blood with high separation efficiency through Smart centrifugation, followed by microfluidic trapping and subsequent detection using deep learning applied to microscopy images. We detected, within 2 h, E. coli, K. pneumoniae, or E. faecalis from spiked samples of healthy human donor blood at clinically relevant concentrations as low as 9, 7 and 32 colony-forming units per ml of blood, respectively. However, the detection of S. aureus remains a challenge. This rapid isolation and detection represents a significant advancement towards culture-free detection of bloodstream infections.
每年约有5000万人患败血症,其中1300万人死于败血症。败血症休克患者每延误一小时接受治疗,其存活率就会降低8%。因此,快速检测败血症患者血液中的细菌病原体并进行抗生素敏感性分析对于确定适当的治疗方法至关重要。在此,我们介绍一种方法,通过智能离心从全血中高效分离细菌,然后进行微流控捕获,并利用深度学习对显微镜图像进行后续检测。我们在2小时内从健康人类献血者血液的加标样本中检测到大肠杆菌、肺炎克雷伯菌或粪肠球菌,临床相关浓度分别低至每毫升血液9、7和32个菌落形成单位。然而,金黄色葡萄球菌的检测仍然是一个挑战。这种快速分离和检测代表了在无培养检测血流感染方面的重大进展。
NPJ Digit Med. 2025-8-25
Elife. 2024-5-31
Cochrane Database Syst Rev. 2018-6-25
2025-1
Clin Orthop Relat Res. 2024-9-1
ACS Infect Dis. 2024-12-13
Nat Commun. 2024-11-9