Cui Jiaheng, Yang Yanjun, Kumar Amit, Murray Jackelyn, Jones Les, Chen Xianyan, Tripp Ralph A, Zhao Yiping
School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States.
Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, United States.
J Phys Chem A. 2025 Sep 4;129(35):8204-8219. doi: 10.1021/acs.jpca.5c03375. Epub 2025 Aug 24.
Understanding virus-surface interactions is essential for developing effective biosensors, diagnostic tools, and antiviral strategies. In this study, we present a systematic investigation of the adsorption and coadsorption behavior of 12 respiratory viruses, including influenza, RSV, coronaviruses, adenovirus, and metapneumoviruses, using surface-enhanced Raman scattering (SERS) on SiO-coated silver nanorod array substrates. Both single viruses (SVs) and binary virus mixtures (2VMs) were analyzed in water and normal human saliva, and spectral data were modeled using a modified Brunauer-Emmett-Teller (BET) adsorption framework. Linear least-squares spectral decomposition enabled the extraction of adsorption coefficients that correlate with virus concentration and surface binding affinity. All viruses exhibited multilayer physisorption consistent with Type II isotherms, with the BET constant varying substantially across virus types. Notably, 2VMs demonstrated a significantly enhanced adsorption behavior, often with values 4-25 times greater than in SVs, indicating strong cooperative or competitive effects. Saliva modulated virus-surface interactions in virus-specific ways, emphasizing the complexity of adsorption dynamics in physiological environments. These findings highlight the limitations of single-virus calibration for quantitative detection in mixed-virus samples and underscore the need for mixture-aware analytical models in biosensing applications. This work provides a robust framework for mechanistic insight and quantitative modeling of virus adsorption relevant to real-world diagnostics and environmental monitoring.
了解病毒与表面的相互作用对于开发有效的生物传感器、诊断工具和抗病毒策略至关重要。在本研究中,我们利用表面增强拉曼散射(SERS)在SiO包覆的银纳米棒阵列基底上,对包括流感病毒、呼吸道合胞病毒、冠状病毒、腺病毒和偏肺病毒在内的12种呼吸道病毒的吸附和共吸附行为进行了系统研究。在水和正常人唾液中分析了单一病毒(SVs)和二元病毒混合物(2VMs),并使用改进的布鲁瑙尔-埃米特-特勒(BET)吸附框架对光谱数据进行建模。线性最小二乘光谱分解能够提取与病毒浓度和表面结合亲和力相关的吸附系数。所有病毒均表现出符合II型等温线的多层物理吸附,BET常数在不同病毒类型间差异很大。值得注意的是,2VMs表现出显著增强的吸附行为,其值通常比SVs大4-25倍,表明存在强烈的协同或竞争效应。唾液以病毒特异性方式调节病毒与表面的相互作用,突出了生理环境中吸附动力学的复杂性。这些发现凸显了在混合病毒样本中进行定量检测时单病毒校准的局限性,并强调了生物传感应用中需要考虑混合物的分析模型。这项工作为与实际诊断和环境监测相关的病毒吸附的机理洞察和定量建模提供了一个强大的框架。