Davy Joshua, Dean Thomas P, Greenidge Nikita J, Calmé Benjamin, Lloyd Peter, Chandler James H, Valdastri Pietro
STORM Lab School of Electronic and Electrical Engineering University of Leeds Woodhouse Leeds LS2 9JT UK.
Adv Intell Syst. 2025 Aug;7(8):2400827. doi: 10.1002/aisy.202400827. Epub 2025 Mar 27.
There is a growing need for precise, minimally invasive biopsy techniques that reduce patient discomfort, improve sampling accuracy in hard-to-reach areas, and minimize tissue damage. Vine robots, a type of continuum robot, offer a promising solution with their unique ability to evert, allowing them to navigate complex environments while reducing friction. This article presents a novel vine robot design powered by magnetic fluid. The fluid drives both vine growth through pressurization and enables precise steering and manipulation using external magnetic fields. Unlike previous designs, the robot's high magnetic volume ensures precise control even under pressure, while maintaining a fully soft structure. This allows for controlled needle movements during biopsies. Additionally, the robot achieves passive stabilization by pressing against surrounding walls. This stabilization, combined with magnetic forces, can exert up to 1.26 N of insertion force at the tip, enabling effective tissue penetration. Experiments are conducted with a 5 mm diameter, 145 mm long magnetic fluid-driven vine robot, demonstrating movement in free space, through narrow constrictions, and within phantoms modeled after human bronchial anatomy. These results pave the way for the robot's potential application in minimally invasive surgeries, particularly in difficult-to-access areas of the body.
对于精确、微创活检技术的需求日益增长,这类技术可减轻患者不适、提高在难以触及区域的采样准确性并使组织损伤最小化。藤蔓机器人作为连续体机器人的一种,凭借其独特的外翻能力提供了一个有前景的解决方案,使其能够在减少摩擦的同时在复杂环境中导航。本文介绍了一种由磁流体驱动的新型藤蔓机器人设计。该流体通过加压驱动藤蔓生长,并利用外部磁场实现精确转向和操纵。与以前的设计不同,该机器人的高磁体积即使在压力下也能确保精确控制,同时保持完全柔软的结构。这使得在活检过程中能够控制针的移动。此外,该机器人通过挤压周围壁面实现被动稳定。这种稳定与磁力相结合,可在尖端施加高达1.26 N的插入力,从而实现有效的组织穿透。使用直径5 mm、长145 mm的磁流体驱动藤蔓机器人进行了实验,展示了其在自由空间、通过狭窄通道以及在模拟人体支气管解剖结构的模型内的运动。这些结果为该机器人在微创手术中的潜在应用铺平了道路,特别是在身体难以到达的区域。