Deng Yongjing, Zhu Yongkang, Zhao Xiaodong, Ding Ning, Yang Yong, Wang Mengzhu, Li Jiangang, She Pengfei, Liu Shujuan, Ma Yun, Zhao Qiang
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China.
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 25:e202514416. doi: 10.1002/anie.202514416.
Hybrid copper(I) halides have emerged as a new class of optoelectronic materials due to their tunable structure and photophysical properties. However, systematically correlating inorganic polyhedra configurations with emission characteristics remains challenging. Herein, we address this by synthesizing a homologous series of copper(I) iodides templated solely by the [CHN] cation. Precise control reaction conditions yielded distinct inorganic polyhedral configurations, monomeric [CuI] (1), dimeric [CuI] (2), trimeric [CuI] (3), and tetrameric [CuI] (4). We establish a direct correlation where increasing inorganic aggregation systematically reduces the bandgap and dictates the luminescence color across a near-full visible spectrum, from blue (1) to cyan (2), red (3), and yellow (4). Detailed spectroscopic and theoretical analyses reveal the self-trapped excitons emission mechanism dependent on the Cu-I configuration, in which the closed [CuI] configuration is more resistant to excited lattice deformation, thereby resulting in a lowest Stokes shift energy. Furthermore, stimuli-responsive sequential phase transitions between these well-defined structures were demonstrated, offering insights into their structural dynamics. This work provides critical fundamental understanding of how inorganic framework engineering within a fixed organic host precisely controls both electronic structure and excited-state relaxation pathways in hybrid copper(I) halides, paving the way for rational design of materials with tailored optical properties.
卤化亚铜杂化物因其可调控的结构和光物理性质,已成为一类新型的光电子材料。然而,将无机多面体构型与发射特性进行系统关联仍然具有挑战性。在此,我们通过合成仅由[CHN]阳离子模板化的一系列同系碘化亚铜来解决这一问题。精确控制反应条件产生了不同的无机多面体构型,单体[CuI](1)、二聚体[CuI](2)、三聚体[CuI](3)和四聚体[CuI](4)。我们建立了一种直接关联,即无机聚集的增加会系统性地降低带隙,并决定了近全可见光谱范围内的发光颜色,从蓝色(1)到青色(2)、红色(3)和黄色(4)。详细的光谱和理论分析揭示了依赖于Cu-I构型的自陷激子发射机制,其中封闭的[CuI]构型对激发晶格变形更具抗性,从而导致最低的斯托克斯位移能量。此外,还展示了这些明确结构之间的刺激响应顺序相变,为其结构动力学提供了见解。这项工作为深入理解在固定有机主体中进行无机框架工程如何精确控制卤化亚铜杂化物的电子结构和激发态弛豫途径提供了关键的基础认识,为合理设计具有定制光学性质的材料铺平了道路。