通过整合理论建模和高分辨率成像揭示核纤层相关结构域形成的生物物理学
Revealing the biophysics of lamina-associated domain formation by integrating theoretical modeling and high-resolution imaging.
作者信息
Dhankhar Monika, Guo Zixian, Kant Aayush, Basir Ramin, Joshi Rohit, Vinayak Vinayak, Heo Su Chin, Mauck Robert L, Lakadamyali Melike, Shenoy Vivek B
机构信息
Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
出版信息
Nat Commun. 2025 Aug 25;16(1):7909. doi: 10.1038/s41467-025-63244-1.
Chromatin-lamina interactions regulate gene activity by forming lamina-associated domains (LADs), which contribute to cellular identity through gene repression. However, the strength of these interactions and their responsiveness to environmental cues remain unclear. Here, we develop a theoretical framework to predict LAD morphology in human mesenchymal stem cells (MSCs), whose differentiation potential depends on the stiffness of the microenvironment. Our model integrates chromatin-lamina interactions with histone modifications, revealing a bimodal distribution of chromatin-lamina affinity shaped by nuclear heterogeneities such as nuclear pores. We predict that contractility-driven translocation of histone deacetylase 3 (HDAC3) enhances chromatin-lamina affinity, leading to LAD thickening on soft substrates-a prediction validated through imaging and functional perturbations. Notably, in tendinosis, a condition marked by collagen degeneration and tissue softening, LAD thickening mirrors the behavior of MSCs on soft substrates, highlighting how microenvironmental mechanics influence genome organization and stem cell fate.
染色质-核纤层相互作用通过形成核纤层相关结构域(LADs)来调节基因活性,这些结构域通过基因抑制作用来塑造细胞特性。然而,这些相互作用的强度及其对环境信号的响应仍不清楚。在此,我们构建了一个理论框架,以预测人间充质干细胞(MSCs)中的LAD形态,其分化潜能取决于微环境的硬度。我们的模型将染色质-核纤层相互作用与组蛋白修饰整合在一起,揭示了由核孔等核异质性塑造的染色质-核纤层亲和力的双峰分布。我们预测,组蛋白去乙酰化酶3(HDAC3)的收缩驱动易位会增强染色质-核纤层亲和力,导致在柔软底物上LAD增厚——这一预测通过成像和功能扰动得到验证。值得注意的是,在以胶原蛋白变性和组织软化特征的肌腱病中,LAD增厚反映了MSCs在柔软底物上的行为,突出了微环境力学如何影响基因组组织和干细胞命运。