Halder Sayan, Kothoori Naga Pranava Sree, Samanta Pralok K, Chakraborty Chanchal
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
Department of Chemistry, School of Science, Gandhi Institute of Technology and Management (GITAM), Hyderabad 502329, India.
ACS Appl Mater Interfaces. 2025 Sep 10;17(36):50877-50890. doi: 10.1021/acsami.5c11283. Epub 2025 Aug 26.
Modern smart windows that can efficiently regulate solar light and heat in the visible-to-NIR region are essential to reduce the indoor cooling cost for energy-efficient buildings. In this work, we developed a square-shaped bimetallic Pt(II)-Co(II) containing metallo-macrocycle (Pt-Co-TPYN) using a pyridine-terpyridine-based heteroditopic ligand (TPYN) via a stepwise complexation reaction. Structural analysis of Pt-Co-TPYN revealed that π-π stacking and the Pt···Pt interaction promoted self-assembled 2D nanosheets with high surface area and mesoporosity. The solution-processable electrochrome exhibited a reversible color change from transparent orange to deep black with an optical contrast of 85.2% within a voltage window of -2.0 to +0.5 V, driven by the Co(II)/Co(I) redox couple. The Pt-Co-TPYN film disclosed excellent electrochromic performance, including fast response time (8.6 and 12.1 s for bleaching and coloring, respectively), high coloration efficiency of 309.8 cmC, stable cycling over 800 cycles, and a long optical memory. Notably, the reduced black state blocked more than 99.97% of total solar irradiance. The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations supported the origin of the broad vis-NIR absorption in the reduced state. A prototype smart window demonstrated a temperature drop of ∼11 °C between two redox states and nearly 50 °C compared to normal glass, highlighting the promising energy-saving smart building applications of the Pt-Co-TPYN electrochrome.
能够在可见光到近红外区域有效调节太阳光和热量的现代智能窗户对于降低节能建筑的室内制冷成本至关重要。在这项工作中,我们通过逐步络合反应,使用基于吡啶-三联吡啶的异双齿配体(TPYN)开发了一种含双金属Pt(II)-Co(II)的金属大环化合物(Pt-Co-TPYN)。对Pt-Co-TPYN的结构分析表明,π-π堆积和Pt···Pt相互作用促进了具有高表面积和介孔率的自组装二维纳米片的形成。这种可溶液加工的电致变色材料在-2.0至+0.5 V的电压窗口内,由Co(II)/Co(I)氧化还原对驱动,呈现出从透明橙色到深黑色的可逆颜色变化,光学对比度为85.2%。Pt-Co-TPYN薄膜展现出优异的电致变色性能,包括快速响应时间(漂白和着色分别为8.6和12.1秒)、309.8 cmC的高显色效率、超过800次循环的稳定循环以及长光学记忆。值得注意的是,还原后的黑色状态阻挡了超过99.97%的总太阳辐照度。密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)计算支持了还原态下宽可见光-近红外吸收的起源。一个智能窗户原型在两种氧化还原状态之间显示出约11°C的温度下降,与普通玻璃相比下降了近50°C,突出了Pt-Co-TPYN电致变色材料在智能建筑节能应用方面的广阔前景。