Huang Xingzhi, Yuan Songsong, Zhou Aiyun, Yuan Xinchun, Li Yaohui, Kuang Yufan, Xu Pan
Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Ann Med. 2025 Dec;57(1):2551819. doi: 10.1080/07853890.2025.2551819. Epub 2025 Aug 26.
Individualized risk stratification in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) remains challenging. This study aimed to develop and validate a multi-task deep learning model using longitudinal liver ultrasound images for prognosis prediction.
A total of 372 HBV-ACLF patients were retrospectively enrolled, and baseline (T0) and 5 days post-admission (T1) liver ultrasound images, clinical data, and 30-day outcome (survival/mortality) were collected. A Siamese U-net deep learning model (Siamese U-Net) was trained to automatically segment the liver region and predict 30-day mortality using longitudinal liver ultrasound images from the training cohort ( = 290). The model output and clinical predictors were integrated into a combined model Cox regression, with a clinical model developed for comparison. Model performance was evaluated for segmentation and prediction in the validation cohort ( = 82).
Siamese U-Net-generated masks achieve Dice Coefficients of 0.912 and 0.913 against manual delineation for T0 and T1 images in the validation cohort. The Siamese U-Net significantly outperformed the clinical model ( < 0.01), achieving a C-index of 0.795 and an AUC of 0.851 in the validation cohort. Calibration curves and decision curve analyses showed superior calibration and clinical utility. The combined model achieved a C-index of 0.834 and an AUC of 0.892, marginally improving the Siamese U-Net ( > 0.05) but significantly enhancing the clinical model ( < 0.01) in the validation cohort.
The Siamese U-Net emerges as a promising tool in predicting prognosis for HBV-ACLF, thereby enhancing clinical decision-making and improving patient outcomes.
乙型肝炎病毒相关慢加急性肝衰竭(HBV-ACLF)的个体化风险分层仍然具有挑战性。本研究旨在开发并验证一种使用肝脏纵向超声图像的多任务深度学习模型,用于预后预测。
回顾性纳入372例HBV-ACLF患者,收集基线(T0)和入院后5天(T1)的肝脏超声图像、临床数据以及30天结局(生存/死亡)。训练一个连体U型网络深度学习模型(Siamese U-Net),以自动分割肝脏区域,并使用来自训练队列(n = 290)的肝脏纵向超声图像预测30天死亡率。将模型输出和临床预测指标整合到一个联合模型(Cox回归)中,并开发一个临床模型用于比较。在验证队列(n = 82)中评估模型在分割和预测方面的性能。
在验证队列中,Siamese U-Net生成的掩码与T0和T1图像的手动描绘相比,Dice系数分别为0.912和0.913。Siamese U-Net显著优于临床模型(P < 0.01),在验证队列中C指数为0.795,AUC为0.851。校准曲线和决策曲线分析显示出更好的校准和临床实用性。联合模型在验证队列中的C指数为0.834,AUC为0.892,略微优于Siamese U-Net(P > 0.05),但显著优于临床模型(P < 0.01)。
Siamese U-Net成为预测HBV-ACLF预后的一种有前景的工具,从而增强临床决策并改善患者结局。