Suppr超能文献

一种用于在结肠和肺模型中追踪结直肠癌衍生细胞外囊泡的深度学习方法。

A Deep Learning Approach for Tracking Colorectal Cancer-Derived Extracellular Vesicles in Colon and Lung Models.

作者信息

Chiabotto Giulia, Dumontel Bianca, Zilli Luca, Vighetto Veronica, Savino Giorgia, Alfieri Francesca, Licciardello Michela, Cedrino Massimo, Arena Sabrina, Tonda-Turo Chiara, Ciardelli Gianluca, Cauda Valentina

机构信息

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.

Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino 10060, Italy.

出版信息

ACS Biomater Sci Eng. 2025 Sep 8;11(9):5343-5355. doi: 10.1021/acsbiomaterials.5c00380. Epub 2025 Aug 26.

Abstract

According to the International Agency for Research on Cancer and the World Health Organization, colorectal cancer (CRC) is the third most common cancer in the world and the main cause of gastrointestinal cancer-related deaths. Despite advances in therapeutic regimens, the incidence of metastatic CRC is increasing due to the development of resistance to conventional treatments. Metastases, particularly in the liver and lungs, represent the leading cause of death and poor prognosis in CRC patients. Recent evidence demonstrates that extracellular vesicles (EVs) are involved in communication between cancer cells and the surrounding environment. Understanding the potential mechanisms underlying EV-driven metastasis and tumor progression could facilitate the development of innovative strategies for early diagnosis and effective treatment of CRC metastasis. In this work, we developed a deep learning-based approach to track CRC-derived EVs in colon and lung models, enabling precise quantification of their uptake and trafficking . Moreover, we observed their tropism toward heterologous healthy cells in biologically relevant 3D models of colon and lung tissues, indicating the inherent role of CRC-EVs in metastatic niche formation and tumor initiation, raising their potential as innovative diagnostic and prognostic biomarkers as well as therapeutic targets in CRC.

摘要

根据国际癌症研究机构和世界卫生组织的数据,结直肠癌(CRC)是全球第三大常见癌症,也是胃肠道癌症相关死亡的主要原因。尽管治疗方案有所进展,但由于对传统治疗产生耐药性,转移性结直肠癌的发病率仍在上升。转移,尤其是肝转移和肺转移,是CRC患者死亡和预后不良的主要原因。最近的证据表明,细胞外囊泡(EVs)参与癌细胞与周围环境之间的通讯。了解EV驱动的转移和肿瘤进展的潜在机制,有助于开发早期诊断和有效治疗CRC转移的创新策略。在这项工作中,我们开发了一种基于深度学习的方法,用于在结肠和肺模型中追踪CRC衍生的EVs,从而能够精确量化它们的摄取和运输。此外,我们在具有生物学相关性的结肠和肺组织3D模型中观察到它们对异源健康细胞的趋向性,这表明CRC-EVs在转移小生境形成和肿瘤起始中具有内在作用,提高了它们作为CRC创新诊断和预后生物标志物以及治疗靶点的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验