Heinrichs Helen, Kies Alexander, Nagel Saskia K, Kiessling Fabian
Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany.
Service and Technology Marketing, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany.
J Med Internet Res. 2025 Aug 26;27:e74187. doi: 10.2196/74187.
Artificial intelligence (AI) has the potential to transform clinical practice and diagnostics. Amid workforce shortages, AI-based applications assist in decision-making, patient monitoring, and administrative tasks. However, despite enthusiasm, integration into clinical practice remains limited because of concerns about usability, ethical implications, and physicians' acceptance. Understanding physicians' attitudes and engaging them in AI development may foster acceptance and adoption.
This study aimed to comprehensively assess physicians' attitudes toward AI in medicine.
We conducted a mixed methods study combining a web-based survey and qualitative interviews. The survey explored physicians' perspectives on the advantages and disadvantages of AI, its role in decision-making, and impact on physician-patient communication. Attitudes were measured using a 5-point Likert scale, covering cognitive and affective dimensions. An exploratory factor analysis (EFA) identified underlying attitudinal factors, while the Mann-Whitney U and the Kruskal-Wallis tests examined differences in attitudes based on physicians' age, discipline, AI familiarity, and other variables. Overall, 13 physicians, independent of the survey sample, participated in semistructured interviews, which were analyzed using inductive coding and thematic analysis.
The survey yielded 498 responses. EFA revealed two factors: (1) AI enthusiasm and acceptance (Cronbach α=0.83) and (2) AI skepticism and apprehension (Cronbach α=0.77). Physicians reported high AI enthusiasm (median 4, IQR 3.57-4.29) and lower skepticism (median 3.62, IQR 3.20-4.20; reverse coded, with higher scores indicating reduced skepticism). Greater AI familiarity, use in daily life or professionally, and involvement in research were strongly associated with greater enthusiasm and lower skepticism. Physicians involved in AI-related research reported significantly higher enthusiasm (mean rank: AI research=111.52; no AI research=54.32; P<.001) and lower skepticism (mean rank: AI research=108.27; no AI research=70.45; P=.01). Those using AI professionally or intending to do so similarly expressed high enthusiasm (mean rank: professional use=253.88; no use=196.17; P=.001) and lower skepticism (mean rank: plan to use=275.93; no use=218.86; P=.001). Greater familiarity with AI tools was also strongly associated with higher enthusiasm (mean rank: very familiar=323.55; not familiar=169.86; P<.001) and lower skepticism (mean rank: very familiar=296.90; not familiar=186.23; P=.008). Chief physicians (mean rank 277.32) were significantly less skeptical than residents (mean rank 210.60; P=.01); however, age and discipline did not influence attitudes. The qualitative analysis identified six themes shaping physicians' attitudes: (1) status quo, (2) AI dependency and negligence, (3) role changes and needs, (4) AI transparency and decision-making, (5) the physician-patient relationship, and (6) a framework for responsible AI integration. These findings led to several key propositions considered critical for AI adoption.
AI in medicine is viewed positively, with attitudes shaped more by experience and engagement than by demographic factors. While concerns persist, they diminish with increased familiarity and professional use. These findings highlight the need for targeted education, hands-on training, and standardized implementation strategies to enhance AI engagement and facilitate adoption.
人工智能(AI)有潜力改变临床实践和诊断方式。在劳动力短缺的情况下,基于人工智能的应用程序有助于决策、患者监测和行政任务。然而,尽管人们对此充满热情,但由于对可用性、伦理影响以及医生接受度的担忧,其在临床实践中的整合仍然有限。了解医生的态度并让他们参与人工智能开发可能会促进其被接受和采用。
本研究旨在全面评估医生对医学人工智能的态度。
我们进行了一项混合方法研究,结合了基于网络的调查和定性访谈。该调查探讨了医生对人工智能优缺点的看法、其在决策中的作用以及对医患沟通的影响。态度通过5点李克特量表进行测量,涵盖认知和情感维度。探索性因素分析(EFA)确定了潜在的态度因素,而曼-惠特尼U检验和克鲁斯卡尔-沃利斯检验则根据医生的年龄、学科、对人工智能的熟悉程度和其他变量,研究了态度上的差异。总体而言,13名与调查样本无关的医生参与了半结构化访谈,并使用归纳编码和主题分析进行了分析。
该调查共获得498份回复。探索性因素分析揭示了两个因素:(1)人工智能热情与接受度(克朗巴哈α系数 = 0.83)和(2)人工智能怀疑与担忧(克朗巴哈α系数 = 0.77)。医生们报告了较高的人工智能热情(中位数为4,四分位距为3.57 - 4.29)和较低的怀疑态度(中位数为3.62,四分位距为3.20 - 4.20;反向编码,分数越高表明怀疑态度越低)。对人工智能更熟悉、在日常生活或专业中使用过人工智能以及参与过相关研究,都与更高的热情和更低的怀疑态度密切相关。参与人工智能相关研究的医生报告的热情显著更高(平均秩次:人工智能研究 = 111.52;未参与人工智能研究 = 54.32;P <.001),怀疑态度显著更低(平均秩次:人工智能研究 = 108.27;未参与人工智能研究 = 70.45;P = 0.01)。那些在专业上使用人工智能或打算使用人工智能的医生同样表达了较高的热情(平均秩次:专业使用 = 253.88;未使用 = 196.17;P = 0.001)和较低的怀疑态度(平均秩次:计划使用 = 275.93;未使用 = 218.86;P = 0.001)。对人工智能工具更熟悉也与更高的热情(平均秩次:非常熟悉 = 323.55;不熟悉 = 169.86;P <.001)和更低的怀疑态度(平均秩次:非常熟悉 = 296.90;不熟悉 = 186.23;P = 0.008)密切相关。主任医师(平均秩次277.32)的怀疑态度明显低于住院医师(平均秩次210.60;P = 0.01);然而,年龄和学科并未影响态度。定性分析确定了塑造医生态度的六个主题:(1)现状,(2)人工智能依赖与疏忽,(3)角色变化与需求,(4)人工智能透明度与决策,(5)医患关系,以及(6)负责任的人工智能整合框架。这些发现得出了几个被认为对人工智能采用至关重要的关键命题。
医学领域对人工智能的看法是积极的,态度更多地由经验和参与度而非人口统计学因素塑造。虽然担忧仍然存在,但随着熟悉程度和专业使用的增加,这些担忧会减少。这些发现凸显了有针对性的教育、实践培训和标准化实施策略的必要性,以增强对人工智能的参与并促进其采用。