Zhu Dongzhi, Zhang Qiuyue, Jia Dedong, Ma Yanping, Sun Wen-Hua
Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University Nanning 530105 China.
Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
RSC Adv. 2025 Aug 12;15(35):28601-28612. doi: 10.1039/d5ra04501k. eCollection 2025 Aug 11.
A series of 2-[2,6-bis(4,4'-difluorobenzhydryl)-4-methylphenylimino]-3-aryliminobutylnickel complexes was synthesized and fully characterized using FT-IR, elemental analysis, and single-crystal X-ray diffraction in the case of Ni1. The structural analysis revealed significant deviation from ideal tetrahedral geometry. When activated with MAO, these complexes demonstrated superior catalytic performance compared to previously reported unsymmetrical 2,3-bis(arylimino)butylnickel analogs. The optimized system, incorporating -difluorobenzhydryl and -methyl electron-donating groups, achieved an exceptional activity of 26.56 × 10 g(PE) mol (Ni) h. The resulting polyethylenes exhibited a broad spectrum of microstructures, ranging from semi-crystalline to nearly amorphous, with unimodal ultra-high molecular weights ( : 4.33-26.72 × 10 g mol) and tunable branching degrees (62-200/1000 C) achieved through a controlled chain-walking mechanism. The unique balance of molecular weight and crystalline-amorphous regions in these polymers translated to outstanding mechanical properties, including tensile strengths of 1.68-13.42 MPa, elongations at break of 388-529%, and elastic recoveries of 21-73%. Notably, the Ni1/EtAlCl catalyst system demonstrated enhanced thermal stability for ethylene polymerization, achieving a higher activity of 2.56 × 10 g(PE) mol (Ni) h at 90 °C compared to 1.94 × 10 g(PE) mol (Ni) h at 70 °C for Ni1/MAO. However, the polymers produced with Ni1/EtAlCl exhibited lower molecular weights (2.67-10.90 × 10 g mol) and inferior mechanical properties, underscoring the critical role of molecular weight in determining material properties.
合成了一系列2-[2,6-双(4,4'-二氟二苯甲基)-4-甲基苯基亚氨基]-3-芳基亚氨基丁基镍配合物,并通过傅里叶变换红外光谱(FT-IR)、元素分析对其进行了全面表征,对于Ni1还采用了单晶X射线衍射分析。结构分析表明,其显著偏离理想的四面体几何结构。用甲基铝氧烷(MAO)活化时,与先前报道的不对称2,3-双(芳基亚氨基)丁基镍类似物相比,这些配合物表现出优异的催化性能。优化后的体系含有二氟二苯甲基和甲基供电子基团,实现了26.56×10 g(PE) mol (Ni) h的优异活性。所得聚乙烯呈现出广泛的微观结构,从半结晶到近乎无定形,具有单峰超高分子量( : 4.33 - 26.72×10 g mol),并且通过可控的链行走机制实现了可调的支化度(62 - 200/1000 C)。这些聚合物中分子量与结晶-非晶区域的独特平衡转化为优异的机械性能,包括1.68 - 13.42 MPa的拉伸强度、388 - 529%的断裂伸长率以及21 - 73%的弹性回复率。值得注意的是,Ni1/EtAlCl催化剂体系在乙烯聚合反应中表现出增强的热稳定性,在90℃时活性为2.56×10 g(PE) mol (Ni) h,而Ni1/MAO在70℃时活性为1.94×10 g(PE) mol (Ni) h。然而,用Ni1/EtAlCl制备的聚合物分子量较低(2.67 - 10.90×10 g mol)且机械性能较差,这突出了分子量在决定材料性能方面的关键作用。