Chaturbhuj Devidas N, Sliepen Kwinten, Cupo Albert, Steinberg Benjamin, Kazimierczyk Simon, Munawar Tarek, Kramer Kyle, Yasmeen Anila, Andrade Thales G, Lee Wen-Hsin, van der Maas Lara, Gibson Grace, Feliciano Oscar, Del Moral Sanchez Ivan, Schermer Edith, Bronson Rhianna, Benner Alison, Prabhakaran Madhu, Mason Rosemarie, Klasse P J, Ward Andrew B, Ozorowski Gabriel, Sanders Rogier W, Moore John P
Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA.
Department of Medical Microbiology, Amsterdam University Medical Centres, Amsterdam, the Netherlands.
J Virol. 2025 Sep 23;99(9):e0091325. doi: 10.1128/jvi.00913-25. Epub 2025 Aug 27.
Native-like HIV-1 envelope glycoprotein (Env) trimers, exemplified by the SOSIP design, are widely used as immunogens, analytical antigens, and for structural studies. These vaccine research and development programs require trimers that are based on multiple HIV-1 genotypes. While a wide range of protein engineering strategies can produce SOSIP trimers from most Env gene sequences, there are still examples of trimers that are expressed only at impractically low yields or that are unstable. Accordingly, additional protein modifications aimed at overcoming such limitations need to be evaluated. Here, we describe a new heptad repeat 1 modification of gp41, known as dPG, that helps to further stabilize the gp41 component of prototypic and germline-targeting SOSIP trimers in the pre-fusion state and thereby increases post-purification yields substantially. The dPG modification involves a deletion (d) at the highly conserved 566 position that disrupts the heptad repeat and introduces proline (P) and glycine (G) substitutions at positions 567 and 568, respectively. We show that the dPG strategy reinforces previously described stabilization changes in existing SOSIP trimers and can rescue otherwise problematic trimer constructs. The latter includes trimers used to target or analyze human germline antibodies and others derived from the global HIV-1 neutralization panel. In summary, the dPG modification strategy can increase the yield and/or quality of Env trimers that are otherwise difficult to produce.
Stabilized, soluble, pre-fusion SOSIP trimers are widely used in HIV-1 Env vaccine research. Protein engineering techniques have identified multiple ways to stabilize SOSIP trimers from a range of genotypes. However, some SOSIP trimers remain difficult to express at adequate yields and/or purity, so there is a need for additional modifications. Here, we identified a sequence change, designated dPG, to the gp41 subunit that increases the yield and/or quality of various otherwise problematic SOSIP trimers without compromising their antigenicity or structure. This new modification may have general value for HIV-1 vaccine research and development.
以SOSIP设计为代表的类天然HIV-1包膜糖蛋白(Env)三聚体被广泛用作免疫原、分析抗原以及用于结构研究。这些疫苗研发项目需要基于多种HIV-1基因型的三聚体。虽然广泛的蛋白质工程策略可以从大多数Env基因序列产生SOSIP三聚体,但仍有一些三聚体仅以极低的产量表达或不稳定。因此,需要评估旨在克服此类限制的额外蛋白质修饰。在此,我们描述了一种新的gp41七肽重复序列1修饰,称为dPG,它有助于在融合前状态下进一步稳定原型和靶向种系的SOSIP三聚体的gp41组分,从而大幅提高纯化后的产量。dPG修饰涉及在高度保守的566位缺失(d),这会破坏七肽重复序列,并分别在567和568位引入脯氨酸(P)和甘氨酸(G)替代。我们表明,dPG策略加强了先前描述的现有SOSIP三聚体中的稳定变化,并可以挽救原本有问题的三聚体构建体。后者包括用于靶向或分析人类种系抗体的三聚体以及来自全球HIV-1中和组的其他三聚体。总之,dPG修饰策略可以提高原本难以产生的Env三聚体的产量和/或质量。
稳定、可溶的融合前SOSIP三聚体广泛用于HIV-1 Env疫苗研究。蛋白质工程技术已经确定了多种方法来稳定来自一系列基因型的SOSIP三聚体。然而,一些SOSIP三聚体仍然难以以足够的产量和/或纯度表达,因此需要额外的修饰。在此,我们确定了gp41亚基的一个序列变化,称为dPG,它可以提高各种原本有问题的SOSIP三聚体的产量和/或质量,而不影响其抗原性或结构。这种新修饰可能对HIV-1疫苗研发具有普遍价值。