文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过调节β-淀粉样蛋白聚集实现阿尔茨海默病诊断与治疗的光热和光动力策略

Photothermal and Photodynamic Strategies for Diagnosis and Therapy of Alzheimer's Disease by Modulating Amyloid-β Aggregation.

作者信息

Gao Fengli, Hou Yupeng, Wang Yaru, Liu Linyuan, Yi Xinyao, Xia Ning

机构信息

Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

出版信息

Biosensors (Basel). 2025 Jul 24;15(8):480. doi: 10.3390/bios15080480.


DOI:10.3390/bios15080480
PMID:40862941
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12384399/
Abstract

Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer's disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical treatment and radiotherapy, phototherapy has the advantages, including short response time, significant efficacy, and minimal side effects in disease diagnosis and treatment. Recent studies have shown that local thermal energy or singlet oxygen generated by irradiating certain organic molecules or nanomaterials with specific laser wavelengths can effectively degrade Aβ aggregates and depress the generation of ROS, promoting progress in AD diagnosis and therapy. Herein, we outline the development of photothermal therapy (PTT) and photodynamic therapy (PDT) strategies for the diagnosis and therapy of AD by modulating Aβ aggregation. The materials mainly include organic photothermal agents or photosensitizers, polymer materials, metal nanoparticles, quantum dots, carbon-based nanomaterials, etc. In addition, compared to traditional fluorescent dyes, aggregation-induced emission (AIE) molecules have the advantages of good stability, low background signals, and strong resistance to photobleaching for bioimaging. Some AIE-based materials exhibit excellent photothermal and photodynamic effects, showing broad application prospects in the diagnosis and therapy of AD. We further summarize the advances in the detection of Aβ aggregates and phototherapy of AD using AIE-based materials.

摘要

淀粉样β蛋白(Aβ)聚集体被认为是阿尔茨海默病(AD)的重要致病因素。多功能材料通过调节Aβ聚集体和活性氧(ROS)的产生,在AD的诊断和治疗中显示出显著效果。与传统的手术治疗和放射治疗相比,光疗具有响应时间短、疗效显著、疾病诊断和治疗副作用小等优点。最近的研究表明,用特定激光波长照射某些有机分子或纳米材料产生的局部热能或单线态氧可以有效降解Aβ聚集体并抑制ROS的产生,推动了AD诊断和治疗的进展。在此,我们概述了通过调节Aβ聚集来诊断和治疗AD的光热疗法(PTT)和光动力疗法(PDT)策略。这些材料主要包括有机光热剂或光敏剂、聚合物材料、金属纳米颗粒、量子点、碳基纳米材料等。此外,与传统荧光染料相比,聚集诱导发光(AIE)分子具有稳定性好、背景信号低、对生物成像的光漂白抗性强等优点。一些基于AIE的材料表现出优异的光热和光动力效应,在AD的诊断和治疗中显示出广阔的应用前景。我们进一步总结了使用基于AIE的材料检测Aβ聚集体和AD光疗的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/d9c881c60464/biosensors-15-00480-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/275ad8a6dff9/biosensors-15-00480-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/bc34e0c58f7b/biosensors-15-00480-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/b2d965cd7fb3/biosensors-15-00480-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/10579a69cfe8/biosensors-15-00480-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/89f731bad9b2/biosensors-15-00480-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/a4606f92b062/biosensors-15-00480-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/41c4f95a398b/biosensors-15-00480-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/fb8d621efd5b/biosensors-15-00480-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/22353fc2ceed/biosensors-15-00480-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/e6507f151767/biosensors-15-00480-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/a0e1e0673389/biosensors-15-00480-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/1405e3da6993/biosensors-15-00480-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/0746ad173429/biosensors-15-00480-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/bbac9b01781c/biosensors-15-00480-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/f4860b42820e/biosensors-15-00480-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/d9c881c60464/biosensors-15-00480-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/275ad8a6dff9/biosensors-15-00480-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/bc34e0c58f7b/biosensors-15-00480-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/b2d965cd7fb3/biosensors-15-00480-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/10579a69cfe8/biosensors-15-00480-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/89f731bad9b2/biosensors-15-00480-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/a4606f92b062/biosensors-15-00480-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/41c4f95a398b/biosensors-15-00480-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/fb8d621efd5b/biosensors-15-00480-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/22353fc2ceed/biosensors-15-00480-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/e6507f151767/biosensors-15-00480-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/a0e1e0673389/biosensors-15-00480-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/1405e3da6993/biosensors-15-00480-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/0746ad173429/biosensors-15-00480-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/bbac9b01781c/biosensors-15-00480-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/f4860b42820e/biosensors-15-00480-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2ac/12384399/d9c881c60464/biosensors-15-00480-g016.jpg

相似文献

[1]
Photothermal and Photodynamic Strategies for Diagnosis and Therapy of Alzheimer's Disease by Modulating Amyloid-β Aggregation.

Biosensors (Basel). 2025-7-24

[2]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[3]
Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy.

ACS Appl Mater Interfaces. 2023-11-17

[4]
Biofilm-modified Prussian blue improves memory function in late-stage Alzheimer's disease mice with triple therapy.

Int J Pharm. 2025-2-10

[5]
Carbon dots as dual inhibitors of tau and amyloid-beta aggregation for the treatment of Alzheimer's disease.

Acta Biomater. 2024-7-15

[6]
Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review.

Acta Biomater. 2021-3-15

[7]
NIR-Responsive Carbon Dots Functionalized with AS1411 Aptamer: A Dual-Mode Approach to Enhanced Photothermal and Photodynamic Therapy.

ACS Appl Bio Mater. 2025-7-21

[8]
Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy.

Acta Biomater. 2022-1-15

[9]
The Synergistic Potential of Rationally Designed Phenol-Triazole Derivatives to Attenuate Aβ/Cu-Aβ Aggregation and Reactive Oxygen Species.

ACS Chem Neurosci. 2025-8-6

[10]
Electron acceptor motif-manipulated NIR-II AIE photosensitizers synergically induce tumor pyroptosis through multimodal image-guided pure type I photodynamic and photothermal therapy.

Biomaterials. 2026-1

本文引用的文献

[1]
Shape and Size Effects of Gold Nanoparticles for Tumor Photoacoustic Imaging and Photothermal Therapy Within the NIR-I and NIR-II Biowindows.

Small. 2025-5

[2]
Carbon nanomaterials for phototherapy.

Nanophotonics. 2022-11-21

[3]
Prussian blue nanocages as efficient radical scavengers and photothermal agents for reducing amyloid-beta induced neurotoxicity.

Colloids Surf B Biointerfaces. 2025-2

[4]
Photocatalytic, photothermal, and blood-brain barrier-permeable carbon nanodots: A potent multifunctional scavenger for β-amyloid plaque.

Colloids Surf B Biointerfaces. 2025-2

[5]
Application of carbon-based nanomaterials in Alzheimer's disease.

Mater Horiz. 2025-2-3

[6]
Recent Advances in Therapeutics for the Treatment of Alzheimer's Disease.

Molecules. 2024-10-30

[7]
Smart molecular designs and applications of activatable organic photosensitizers.

Nat Rev Chem. 2025-1

[8]
Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation.

ACS Chem Neurosci. 2024-11-20

[9]
Dual-Carbon Dots Composite: A Multifunctional Photo-Propelled Nanomotor Against Alzheimer's β-Amyloid.

Small. 2024-12

[10]
A mitochondria targeting, designed, aggregation-induced emission probe for selective detection of neurotoxic amyloid-β aggregates.

J Mater Chem B. 2024-11-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索