Liu Shi-Qi, Ma Hao-Nan, Tang Meng-Xue, Shao Yu-Ming, Yao Ting-Ting, He Ling-Yan, Huang Xiao-Feng
Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518107, China.
Toxics. 2025 Jul 30;13(8):643. doi: 10.3390/toxics13080643.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6-47.9%), vehicle exhaust (24.2-31.2%), biogenic emission (13.8-18.1%), natural gas (8.5-16.3%), gasoline evaporation (3.2-8.9%), and biomass burning (0.3-2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities.
了解挥发性有机化合物(VOCs)排放源对甲醛(HCHO)水平的不同影响,对于有效减少关键光化学自由基前体、从而加强对大气氧化能力(AOC)和臭氧形成的调控至关重要。本研究系统地选取并分析了中国深圳三个城区为期一年的VOC测量数据。采用光化学年龄校正方法来确定源解析前VOCs的初始浓度;然后利用正定矩阵因子分解(PMF)模型解析出六个主要排放源:溶剂使用(28.6 - 47.9%)、机动车尾气排放(24.2 - 31.2%)、生物源排放(13.8 - 18.1%)、天然气(8.5 - 16.3%)、汽油挥发(3.2 - 8.9%)和生物质燃烧(0.3 - 2.4%)。随后应用一个结合了Shapley加性解释(SHAP)的机器学习(ML)框架,在考虑反应时间调整的情况下,评估六个排放源对HCHO浓度的影响。这种由机器学习驱动的非线性分析表明,在不同功能区和不同季节,机动车尾气排放几乎总是主要的人为排放贡献源,汽油挥发是另一个关键贡献源,而传统的反应活性指标方法——臭氧生成潜势(OFP),往往低估了这两个排放源的作用。本研究强调了加强交通部门减排对于减轻特大城市HCHO污染的首要性。