Stamp Claas-Hendrik, Groß Annalena, Irulegui Aitana Beato, Balzer Bizan N, Calvino Céline
Albert Ludwig University of Freiburg, Cluster of Excellence livMatS, Georges-Köhler-Allee 105, Freiburg D-79110, Germany.
Albert Ludwig University of Freiburg, Department of Microsystems Engineering (IMTEK), Georges-Köhler-Allee 102, Freiburg D-79110, Germany.
J Am Chem Soc. 2025 Sep 10;147(36):32830-32839. doi: 10.1021/jacs.5c08976. Epub 2025 Aug 27.
Achieving precise control over covalent bond formation and cleavage is critical for advancing material recycling and enabling repeated reuse. Here, we introduce quinolinones as versatile, multistimuli-responsive motifs enabling orthogonal and controlled covalent bond manipulation via a reversible [2π + 2π] cycloaddition triggered by light and thermal stimuli. While photochemical bond formation is well-established, thermal reversion of such bonds for material deconstruction remains underexplored. Furthermore, we demonstrate, for the first time, the exceptional ability of quinolinones to undergo symmetrical thermal cleavage, in the solid state with unprecedented efficiency, achieving over 99% monomer recovery at 210 °C within 10 min. This circular process is initially demonstrated at the molecular level, showing an effective cyclability of at least three full bond formation and cleavage cycles with quantitative efficiency. Extending to the macromolecular scale, quinolinones are incorporated into linear polymers to enable phototriggered network formation followed by thermally induced bulk deconstruction. This responsive polymer system highlights remarkable versatility and recyclability. Finally, exploiting their multiresponsivity, quinolinones are applied to advanced coatings with reversible debonding and thermal degradation capabilities. This work establishes quinolinones as a robust platform for stimuli-responsive materials, paving the way for next-generation recyclable systems with enhanced functionalities.
实现对共价键形成和断裂的精确控制对于推进材料循环利用和实现重复使用至关重要。在此,我们引入喹啉酮作为多功能、多刺激响应基序,通过光和热刺激引发的可逆[2π + 2π]环加成反应实现正交和可控的共价键操纵。虽然光化学键形成已得到充分确立,但此类键的热逆转用于材料解构仍未得到充分探索。此外,我们首次证明了喹啉酮在固态下以前所未有的效率进行对称热裂解的卓越能力,在210°C下10分钟内实现了超过99%的单体回收。这个循环过程最初在分子水平上得到证明,显示出至少三个完整的键形成和断裂循环的有效循环能力,且效率定量。扩展到高分子尺度,喹啉酮被纳入线性聚合物中,以实现光触发的网络形成,随后进行热诱导的整体解构。这种响应性聚合物体系突出了显著的多功能性和可回收性。最后,利用其多响应性,喹啉酮被应用于具有可逆脱粘和热降解能力的先进涂层。这项工作将喹啉酮确立为刺激响应材料的强大平台,为具有增强功能的下一代可回收系统铺平了道路。