Zhang Qunwei, Xing Hongwei, Yang Aimin, Li Jie, Han Yang
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China.
Tangshan Key Laboratory of Engineering Computing, North China University of Science and Technology, Tangshan 063210, China.
Materials (Basel). 2025 Aug 8;18(16):3727. doi: 10.3390/ma18163727.
Blast-furnace staves serve as critical protective components in ironmaking, requiring synergistic optimization of slag-coating behavior and self-protection capability to extend furnace lifespan and reduce energy consumption. Traditional integer-order heat transfer models, constrained by assumptions of homogeneous materials and instantaneous heat conduction, fail to accurately capture the cross-scale thermal memory effects and non-local diffusion characteristics in multiphase heterogeneous blast-furnace systems, leading to substantial inaccuracies in predicting dynamic slag-layer evolution. This review synthesizes recent advancements across three interlinked dimensions: first, analyzing design principles of zonal staves and how refractory material properties influence slag-layer formation, proposing a "high thermal conductivity-low thermal expansion" material matching strategy to mitigate thermal stress cracks through optimized synergy; second, developing a mechanistic model by introducing the Caputo fractional derivative to construct a non-Fourier heat-transfer framework (i.e., a heat-transfer model that accounts for thermal memory effects and non-local diffusion, beyond the instantaneous heat conduction assumption of Fourier's law), which effectively describes fractal heat flow in micro-porous structures and interfacial thermal relaxation, addressing limitations of conventional models; and finally, integrating industrial case studies to validate the improved prediction accuracy of the fractional-order model and exploring collaborative optimization of cooling intensity and slag-layer thickness, with prospects for multiscale interfacial regulation technologies in long-life, low-carbon stave designs.
高炉冷却壁是炼铁过程中的关键保护部件,需要对炉渣涂层行为和自我保护能力进行协同优化,以延长炉体寿命并降低能耗。传统的整数阶传热模型受限于均质材料假设和瞬时热传导,无法准确捕捉多相异质高炉系统中的跨尺度热记忆效应和非局部扩散特性,导致在预测动态渣层演变时存在较大误差。本综述综合了三个相互关联维度的最新进展:第一,分析分区冷却壁的设计原理以及耐火材料性能如何影响渣层形成,提出“高导热率 - 低热膨胀”材料匹配策略,通过优化协同作用减轻热应力裂纹;第二,通过引入卡普托分数阶导数建立机理模型,构建非傅里叶传热框架(即一种考虑热记忆效应和非局部扩散的传热模型,超越了傅里叶定律的瞬时热传导假设),有效描述微孔结构中的分形热流和界面热弛豫,解决传统模型的局限性;最后,整合工业案例研究以验证分数阶模型提高的预测准确性,并探索冷却强度和渣层厚度的协同优化,展望长寿命、低碳冷却壁设计中的多尺度界面调控技术前景。