Xiao Nan, Zhang Aijia, Yuan Kunjie, Cao Wenbin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
Materials (Basel). 2025 Aug 15;18(16):3844. doi: 10.3390/ma18163844.
The utility of nanostructured TiO in the degradation of organic compounds and the disinfection of pathogenic microorganisms represents an important endeavor in photocatalysis. However, the low photocatalytic efficiency of TiO remains challenging. Herein, we report a robust photocatalytic route to benzene removal rendered by enhancing its adsorption capacity via rationally designed mesoporous SiO-coated TiO colloids. Specifically, amorphous, mesoporous SiO-coated TiO nanoparticles (denoted T@S NPs) are produced via a precipitation-gel-hydrothermal approach, possessing an increased specific surface area over pristine TiO NPs for improved adsorption of benzene. Notably, under UV irradiation, the degradation rate of benzene by T@S NPs reaches 89% within 30 min, representing a 3.1-fold increase over that achieved by pristine TiO. Moreover, a 99.5% degradation rate within 60 min is achieved and maintains a stable photocatalytic activity over five cycles. Surface coating of TiO with amorphous SiO imparts the T@S composite NPs nearly neutral characteristic due to the formation of Ti-O-Si bonds, while manifesting enhanced light harvesting, excellent stability, adhesion, and photocatalytic bacteriostatic effects. Our study underscores the potential of T@S composites for practical applications in photocatalysis over pristine counterparts.
纳米结构TiO在有机化合物降解和致病微生物消毒方面的应用是光催化领域的一项重要工作。然而,TiO的低光催化效率仍然具有挑战性。在此,我们报道了一种通过合理设计的介孔SiO包覆的TiO胶体提高其吸附能力来去除苯的稳健光催化途径。具体而言,通过沉淀-凝胶-水热法制备了非晶态介孔SiO包覆的TiO纳米颗粒(记为T@S NPs),其比表面积比原始TiO NPs有所增加,从而改善了对苯的吸附。值得注意的是,在紫外光照射下,T@S NPs对苯的降解率在30分钟内达到89%,比原始TiO提高了3.1倍。此外,在60分钟内实现了99.5%的降解率,并在五个循环中保持稳定的光催化活性。用非晶态SiO对TiO进行表面包覆,由于形成了Ti-O-Si键,赋予了T@S复合纳米颗粒几乎中性的特性,同时表现出增强的光捕获、优异的稳定性、附着力和光催化抑菌效果。我们的研究强调了T@S复合材料在光催化实际应用中相对于原始材料的潜力。