Suppr超能文献

用于螨虫检测与计数的混合机器学习与深度学习方法的比较研究

A Comparative Study of Hybrid Machine-Learning vs. Deep-Learning Approaches for Mite Detection and Counting.

作者信息

Ghezal Amira, König Andreas

机构信息

Lehrstuhl Kognitive Integrierte Sensorsysteme, Fachbereich Elektrotechnik und Informationstechnik, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.

出版信息

Sensors (Basel). 2025 Aug 15;25(16):5075. doi: 10.3390/s25165075.

Abstract

This study presents a comparative evaluation of traditional machine-learning (ML) and deep-learning (DL) approaches for detecting and counting mites in hyperspectral images. As infestations pose a serious threat to honeybee health, accurate and efficient detection methods are essential. The ML pipeline-based on Principal Component Analysis (PCA), k-Nearest Neighbors (kNN), and Support Vector Machine (SVM)-was previously published and achieved high performance (precision = 0.9983, recall = 0.9947), with training and inference completed in seconds on standard CPU hardware. In contrast, the DL approach, employing Faster R-CNN with ResNet-50 and ResNet-101 backbones, was fine-tuned on the same manually annotated images. Despite requiring GPU acceleration, longer training times, and presenting a reproducibility challenges, the deep-learning models achieved precision of 0.966 and 0.971, recall of 0.757 and 0.829, and F1-Score of 0.848 and 0.894 for ResNet-50 and ResNet-101, respectively. Qualitative results further demonstrate the robustness of the ML method under limited-data conditions. These findings highlight the differences between ML and DL approaches in resource-constrained scenarios and offer practical guidance for selecting suitable detection strategies.

摘要

本研究对用于检测和计数高光谱图像中螨虫的传统机器学习(ML)和深度学习(DL)方法进行了比较评估。由于螨虫侵扰对蜜蜂健康构成严重威胁,准确高效的检测方法至关重要。基于主成分分析(PCA)、k近邻(kNN)和支持向量机(SVM)的机器学习流程先前已发表,并取得了高性能(精确率=0.9983,召回率=0.9947),在标准CPU硬件上训练和推理只需数秒。相比之下,采用带有ResNet-50和ResNet-101主干的更快区域卷积神经网络(Faster R-CNN)的深度学习方法,是在相同的人工标注图像上进行微调的。尽管需要GPU加速、训练时间更长且存在可重复性挑战,但深度学习模型在ResNet-50和ResNet-101上分别实现了0.966和0.971的精确率、0.757和0.829的召回率以及0.848和0.894的F1分数。定性结果进一步证明了机器学习方法在有限数据条件下的稳健性。这些发现突出了在资源受限场景中机器学习和深度学习方法之间的差异,并为选择合适的检测策略提供了实际指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815d/12390549/c3784312de70/sensors-25-05075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验