Verma Assim, Kamboj Himanshu, Kumar Garvit, Khandelwal Nitin, Mayer Benjamin E, Rathee Jitender, Chander Yogesh, Nokhwal Alka, Dhanda Shweta, Kumar Ram, Dedar Ramesh Kumar, Bejjanki Sandeep Kumar, Parashar Deepti, Pananghat Gayathri, Tripathi Bhupendra Nath, Thachamvally Riyesh, Sharma Shalini, Kumar Naveen
National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
ICMR-National Institute of Virology, Pune, India.
J Virol. 2025 Aug 29:e0052925. doi: 10.1128/jvi.00529-25.
The coronavirus disease 2019 (COVID-19) pandemic highlighted the critical need for broad-spectrum antivirals with high resistance barriers. Here, we demonstrate that SB431542, a selective TGF-β receptor I (ALK5) inhibitor, exhibits potent antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through unprecedented multitargeted mechanisms. Through comprehensive , isothermal titration calorimetry, and analyses, we identified that SB431542 directly binds to SARS-CoV-2 ORF3a and disrupts its canonical function in inhibiting autophagosome-lysosome fusion. This interaction restored lysosomal acidification and normalized perinuclear LAMP-1 localization, significantly impairing virion assembly as evidenced by disrupted nucleocapsid-RNA association and reduced intracellular viral titers. Additionally, SB431542 downregulated the CLEAR network genes responsible for lysosomal biogenesis, further restricting viral egress pathways. Our temporal analyses revealed that at later infection stages (36-48 hours post-infection [hpi]), SARS-CoV-2 exploits TGF-β-induced lysosomal membrane permeabilization (LMP) and apoptosis for viral release-processes effectively inhibited by SB431542 through suppression of GADD45b and BAX expression. These multiple mechanisms resulted in an exceptional EC of 751.8 nM against SARS-CoV-2. efficacy was demonstrated in embryonated chicken eggs, where SB431542 conferred dose-dependent protection against lethal infectious bronchitis virus (IBV) challenge, with a favorable therapeutic index of 34.54. Remarkably, sequential passaging of SARS-CoV-2 for 50 generations under SB431542 selection pressure failed to generate resistant variants, contrasting sharply with the rapid resistance emergence typical of direct-acting antivirals. These findings establish SB431542 as a promising broad-spectrum coronavirus inhibitor with a unique triple-mechanism approach that simultaneously targets viral entry via TGF-β/Smad modulation, disrupts ORF3a-mediated lysosomal dysfunction affecting assembly, and attenuates TGF-β-induced apoptosis during late-stage infection, collectively imposing multiple selective constraints that impede escape mutation development.
The COVID-19 pandemic highlighted the urgent need for antiviral drugs with high barriers to resistance. This study reveals that SB431542, a drug previously developed to inhibit TGF-β signaling, exhibits remarkable effectiveness against SARS-CoV-2 through an unprecedented triple-mechanism approach. Unlike conventional antivirals that target a single viral component, SB431542 simultaneously disrupts viral entry, assembly, and release by binding to the viral ORF3a protein and modulating host cellular processes. Most importantly, SARS-CoV-2 failed to develop resistance against SB431542 even after 50 generations of exposure-a significant advantage over current therapeutics that quickly lose effectiveness due to viral mutations. Our findings also uncover that coronaviruses exploit both lysosomal dysfunction and programmed cell death to spread efficiently, providing new targets for therapeutic intervention. This research establishes SB431542 as a promising broad-spectrum coronavirus inhibitor and demonstrates the value of targeting host-virus interactions to overcome antiviral resistance.
2019年冠状病毒病(COVID-19)大流行凸显了对具有高耐药屏障的广谱抗病毒药物的迫切需求。在此,我们证明了选择性转化生长因子-β受体I(ALK5)抑制剂SB431542通过前所未有的多靶点机制对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)表现出强大的抗病毒活性。通过全面的等温滴定量热法和分析,我们确定SB431542直接与SARS-CoV-2 ORF3a结合,并破坏其在抑制自噬体-溶酶体融合中的正常功能。这种相互作用恢复了溶酶体酸化并使核周LAMP-1定位正常化,显著损害病毒体组装,这通过核衣壳-RNA关联的破坏和细胞内病毒滴度的降低得以证明。此外,SB431542下调了负责溶酶体生物发生的CLEAR网络基因,进一步限制了病毒释放途径。我们的时间分析表明,在感染后期(感染后36 - 48小时[hpi]),SARS-CoV-2利用转化生长因子-β诱导的溶酶体膜通透性增加(LMP)和凋亡进行病毒释放,而SB431542通过抑制GADD45b和BAX表达有效抑制了这些过程。这些多种机制导致对SARS-CoV-2的半数有效浓度(EC)异常低至7[具体数值缺失] nM。在鸡胚中证明了其有效性,其中SB431542对致死性传染性支气管炎病毒(IBV)攻击提供了剂量依赖性保护,治疗指数为34.54。值得注意的是,在SB431542选择压力下,SARS-CoV-2连续传代50代未能产生耐药变体,这与直接作用抗病毒药物典型的快速耐药出现形成鲜明对比。这些发现确立了SB431542作为一种有前途的广谱冠状病毒抑制剂,其独特的三重机制方法同时通过转化生长因子-β/ Smad调节靶向病毒进入,破坏ORF3a介导的影响组装的溶酶体功能障碍,并在感染后期减弱转化生长因子-β诱导的凋亡,共同施加了多种选择性限制,阻碍逃逸突变的发展。
COVID-19大流行凸显了对抗病毒耐药性具有高屏障的抗病毒药物的迫切需求。这项研究表明,先前开发用于抑制转化生长因子-β信号传导的药物SB431542通过前所未有的三重机制方法对SARS-CoV-2表现出显著有效性。与针对单一病毒成分的传统抗病毒药物不同,SB431542通过与病毒ORF3a蛋白结合并调节宿主细胞过程,同时破坏病毒进入、组装和释放。最重要的是,即使经过50代暴露,SARS-CoV-2也未能对SB431542产生耐药性——这相对于因病毒突变而迅速失去有效性的当前疗法具有显著优势。我们的发现还揭示冠状病毒利用溶酶体功能障碍和程序性细胞死亡来有效传播,为治疗干预提供了新靶点。这项研究确立了SB431542作为一种有前途的广谱冠状病毒抑制剂,并证明了靶向宿主-病毒相互作用以克服抗病毒耐药性的价值。