一种用于具有化学精度的反应建模的深度学习增强密度泛函框架。

A Deep Learning-Augmented Density Functional Framework for Reaction Modeling with Chemical Accuracy.

作者信息

Xiao Jin, Zhang Yingfeng, Li Bowen, Zhang Shuwen, Gao Ya, Chen Wei, Wang Han, Zhang John Z H, Zhu Tong

机构信息

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Shanghai Innovation Institute, Shanghai, 200003 China.

出版信息

JACS Au. 2025 Jul 24;5(8):3892-3903. doi: 10.1021/jacsau.5c00541. eCollection 2025 Aug 25.

Abstract

Accurate prediction of reaction energetics remains a fundamental challenge in computational chemistry, as conventional density functional theory (DFT) often fails to reconcile high accuracy with computational efficiency. Here, we introduce Deep post-Hartree-Fock (DeePHF), a machine learning framework that integrates neural networks with quantum mechanical descriptors to achieve CCSD-(T)-level precision while retaining the efficiency of DFT to solve the reaction problems. By establishing a direct mapping between the eigenvalues of local density matrices and high-level correlation energies, DeePHF circumvents the traditional accuracy-scalability tradeoff. Trained on a limited data set of small-molecule reactions, our model demonstrates superior performance across multiple benchmark data sets, exhibiting exceptional transferability. In fact, its accuracy even surpasses that of advanced double-hybrid functionals, all while maintaining O-(N) scaling. DeePHF offers a promising pathway to bridge the gap between high-level quantum chemistry methods and the practical demands for scalable, accurate models in computational chemistry, and with further refinement, it is poised to make significant contributions to the advancement of chemical reaction modeling.

摘要

准确预测反应能量学仍然是计算化学中的一项基本挑战,因为传统的密度泛函理论(DFT)常常难以在高精度与计算效率之间取得平衡。在此,我们引入深度后哈特里 - 福克(DeePHF),这是一个机器学习框架,它将神经网络与量子力学描述符相结合,以达到耦合簇单双激发 - 微扰理论(CCSD-(T))水平的精度,同时保持DFT解决反应问题的效率。通过在局部密度矩阵的本征值与高级相关能之间建立直接映射,DeePHF规避了传统的精度 - 可扩展性权衡。在小分子反应的有限数据集上进行训练后,我们的模型在多个基准数据集上展示了卓越的性能,表现出非凡的可迁移性。事实上,其精度甚至超过了先进双杂化泛函,同时保持O-(N)的计算量增长。DeePHF为弥合高级量子化学方法与计算化学中对可扩展、精确模型的实际需求之间的差距提供了一条有前景的途径,并且随着进一步完善,它有望为化学反应建模的发展做出重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff61/12381711/2cac6dea023a/au5c00541_0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索