文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

欧洲商业化杂交玉米育种项目中群体结构的演变及其对遗传多样性的影响

Evolution of population structure in a commercial European hybrid dent maize breeding program and consequences on genetic diversity.

作者信息

Kadoumi Romain, Heslot Nicolas, Henriot Fabienne, Murigneux Alain, Berton Mathilde, Moreau Laurence, Charcosset Alain

机构信息

Limagrain Field Seeds, 28 Route d'Ennezat, 63720, Chappes, France.

Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution (GQE) - Le Moulon, 91190, Gif-Sur-Yvette, France.

出版信息

Theor Appl Genet. 2025 Aug 30;138(9):233. doi: 10.1007/s00122-025-05008-5.


DOI:10.1007/s00122-025-05008-5
PMID:40883612
Abstract

Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. The separation of germplasm into complementary heterotic genetic pools is fundamental to modern hybrid breeding programs. This approach facilitates the development of high-performing hybrids by maximizing heterosis through crosses of divergent inbred lines. Maintaining heterotic structure ensures continuous genetic gain and selection of divergent alleles, but introducing novel germplasm is equally important to mitigate the risks of diversity loss from repeated selection of elite material. This study presents a large-scale assessment of the evolution of genetic diversity, population structure, and differentiation between heterotic groups, within a private European hybrid dent maize breeding program. Forty years of breeding data and 84,000 genotypes were used. Clustering methods revealed two main heterotic groups in modern germplasm: Stiff Stalks and Non-Stiff Stalks. These two groups originated from Stiff Stalk, Iodent, and Lancaster founders, forming three ancestral groups. Differentiation between heterotic groups was low for early founder inbreds and increased over time. Consistently, intragroup diversity decreased over time, and marker fixation and linkage disequilibrium increased. The main cause of diversity loss germplasm-wide was the merging and genetic homogenization of the ancestral Iodent and Lancaster groups into the modern Non-Stiff Stalk heterotic group. Insights into the genetic relationship between hybrid heterotic group population structure and intragroup diversity can assist breeders in enhancing heterotic group divergence, while preserving diversity across selection cycles. This study provides an overview of the evolution of key genetic metrics, to inform strategies for managing diversity and differentiation in commercial hybrid breeding programs.

摘要

硬秆和非硬秆杂种优势群之间的分化随时间显著增加,而两个群体内的遗传多样性下降,突出了长期选择在杂交玉米育种中的影响。硬秆和非硬秆杂种优势群之间的分化随时间显著增加,而两个群体内的遗传多样性下降,突出了长期选择在杂交玉米育种中的影响。将种质分离成互补的杂种优势基因库是现代杂交育种计划的基础。这种方法通过不同自交系的杂交使杂种优势最大化,从而促进高性能杂交种的培育。维持杂种优势结构可确保持续的遗传增益和对不同等位基因的选择,但引入新种质对于减轻因反复选择优良材料而导致的多样性丧失风险同样重要。本研究对欧洲一个私营杂交马齿型玉米育种计划中的遗传多样性、群体结构以及杂种优势群之间的分化演变进行了大规模评估。使用了四十年的育种数据和84000个基因型。聚类方法揭示了现代种质中的两个主要杂种优势群:硬秆群和非硬秆群。这两个群体起源于硬秆、艾奥瓦和兰卡斯特原始种质,形成了三个祖先群体。早期原始自交系的杂种优势群之间的分化较低,且随时间增加。同样,群体内多样性随时间下降,标记固定和连锁不平衡增加。种质范围内多样性丧失的主要原因是原始的艾奥瓦和兰卡斯特群体合并并遗传同质化,形成了现代非硬秆杂种优势群。深入了解杂交杂种优势群群体结构与群体内多样性之间的遗传关系,有助于育种者增强杂种优势群的分化,同时在选择周期中保持多样性。本研究概述了关键遗传指标的演变,为商业杂交育种计划中管理多样性和分化的策略提供参考。

相似文献

[1]
Evolution of population structure in a commercial European hybrid dent maize breeding program and consequences on genetic diversity.

Theor Appl Genet. 2025-8-30

[2]
Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels.

BMC Plant Biol. 2023-6-14

[3]
Joint analysis of phenotypic and molecular data for genetic diversity assessment in extra-early orange maize (Zea Mays L.).

BMC Genomics. 2025-8-28

[4]
Unravelling agronomic performance and genetic diversity of newly developed maize inbred lines for arid conditions.

PeerJ. 2025-6-27

[5]
Breed-specific heterosis for growth and carcass traits in 18 U.S. cattle breeds.

J Anim Sci. 2025-1-4

[6]
Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data.

Theor Appl Genet. 2010-1

[7]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[8]
Experimental evaluation of effectiveness of genomic selection for resistance to northern corn leaf blight in maize.

J Appl Genet. 2024-10-24

[9]
Modeling the influence of phenotypic plasticity on maize hybrid performance.

Plant Commun. 2023-5-8

[10]
Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa.

BMC Plant Biol. 2021-2-17

本文引用的文献

[1]
Assessing the potential of genetic resource introduction into elite germplasm: a collaborative multiparental population for flint maize.

Theor Appl Genet. 2024-1-12

[2]
Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes.

PLoS Biol. 2023-7

[3]
Impact of interpopulation distance on dominance variance and average heterosis in hybrid populations within species.

Genetics. 2023-5-26

[4]
Interplay between extreme drift and selection intensities favors the fixation of beneficial mutations in selfing maize populations.

Genetics. 2021-10-2

[5]
Genomic variation within the maize stiff-stalk heterotic germplasm pool.

Plant Genome. 2021-11

[6]
Back to the future: implications of genetic complexity for the structure of hybrid breeding programs.

G3 (Bethesda). 2021-7-14

[7]
Haplotype structure in commercial maize breeding programs in relation to key founder lines.

Theor Appl Genet. 2019-11-20

[8]
Assessment of breeding programs sustainability: application of phenotypic and genomic indicators to a North European grain maize program.

Theor Appl Genet. 2019-1-21

[9]
A One-Penny Imputed Genome from Next-Generation Reference Panels.

Am J Hum Genet. 2018-8-9

[10]
Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement.

Theor Appl Genet. 2018-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索