Tran Pham Nhat Long, Qian Simon, Götsch Thomas, Grön Corbinian, Velasco-Vélez Juan Jesus, Stühmeier Björn M, Knop-Gericke Axel, Gasteiger Hubert A, Piana Michele
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Chair of Technical Electrochemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany.
ACS Appl Mater Interfaces. 2025 Sep 10;17(36):50626-50638. doi: 10.1021/acsami.5c09047. Epub 2025 Aug 30.
The long-term stability of proton exchange membrane fuel cells (PEMFCs) faces significant challenges, particularly during start-up and shut-down events, which lead to degradation of the cathode catalyst through the oxidation of its carbon support. To improve catalyst durability, an anode catalyst with a high selectivity toward the hydrogen oxidation/evolution reaction rather than the oxygen reduction reaction is necessary. Pt/TiO/C ( < 2) catalysts have been reported to provide excellent hydrogen selectivity due to its strong metal-support interaction (SMSI) between Pt particles and TiO support. To further elucidate the SMSI-induced effect of the catalyst, this study employs near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) at BESSY II with an upgraded operando cell, optimized for the use of membrane electrode assemblies (MEAs) for the first time. The electrochemical behavior of the operando cell is fully consistent with PEMFC measurements for both the standard Pt/C and investigated Pt/TiO/C catalysts. With NAP-XPS, the SMSI-induced effect is observed through a significant suppression of Pt oxidation at high potentials for Pt/TiO/C. A precise quantification of the oxidation charge from both electrochemical and NAP-XPS data evidently shows partial Pt oxidation for Pt/TiO/C, clearly originating from Pt deposited on carbon instead of TiO, as demonstrated by transmission electron microscopy. Nevertheless, the results reveal that barely any oxidation is expected for SMSI-based catalysts such as pure Pt/TiO/C. Cracks in the bilayer graphene used as an X-ray transparent window in the operando setup likely explain the lower absolute values in Pt oxidation obtained from NAP-XPS compared with the values from electrochemistry, still allowing valuable insights into the catalyst behavior.
质子交换膜燃料电池(PEMFC)的长期稳定性面临重大挑战,尤其是在启动和关闭过程中,这会导致阴极催化剂因其碳载体的氧化而降解。为提高催化剂的耐久性,需要一种对氢氧化/析氢反应而非氧还原反应具有高选择性的阳极催化剂。据报道,Pt/TiO/C(<2)催化剂由于Pt颗粒与TiO载体之间存在强金属-载体相互作用(SMSI),因而具有出色的氢选择性。为进一步阐明催化剂的SMSI诱导效应,本研究首次在BESSY II上使用升级后的原位电池,采用近常压X射线光电子能谱(NAP-XPS),该原位电池针对膜电极组件(MEA)的使用进行了优化。原位电池的电化学行为与标准Pt/C和所研究的Pt/TiO/C催化剂的PEMFC测量结果完全一致。通过NAP-XPS,在高电位下观察到Pt/TiO/C中Pt氧化受到显著抑制,从而体现出SMSI诱导效应。从电化学和NAP-XPS数据对氧化电荷进行精确量化,明显表明Pt/TiO/C存在部分Pt氧化,这显然源于沉积在碳而非TiO上的Pt,如透射电子显微镜所示。然而,结果表明,对于基于SMSI的催化剂,如纯Pt/TiO/C,几乎不会发生氧化。原位装置中用作X射线透明窗口的双层石墨烯中的裂纹,可能解释了与电化学值相比,NAP-XPS获得的Pt氧化绝对值较低的原因,不过这仍能为催化剂行为提供有价值的见解。