Suppr超能文献

利用人工“无智能”分子进行化学空间探索。

Chemical Space Exploration with Artificial "Mindless" Molecules.

作者信息

Gasevic Thomas, Müller Marcel, Schöps Jonathan, Lanius Stephanie, Hermann Jan, Grimme Stefan, Hansen Andreas

机构信息

Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.

Microsoft Research AI for Science, Karl-Liebknecht-Str. 32, 10178 Berlin, Germany.

出版信息

J Chem Inf Model. 2025 Sep 22;65(18):9576-9587. doi: 10.1021/acs.jcim.5c01364. Epub 2025 Sep 2.

Abstract

We introduce MindlessGen, a Python-based generator for creating chemically diverse, "mindless" molecules through random atomic placement and subsequent geometry optimization. Using this framework, we constructed the benchmark set, containing 2061 molecules with high-level PNO-LCCSD(T)-F12 reference data for H-promoted decomposition reactions. This set provides a challenging benchmark for testing, validating, and training density functional approximations (DFAs), semiempirical methods, force fields, and machine learning potentials using molecular structures beyond conventional chemical space. For DFAs, we initially hypothesized that highly parametrized functionals might perform poorly on this set. However, no consistent relationship between the fitting strategy and accuracy was observed. A clear Jacob's ladder trend emerges, with ωB97X-2 achieving the lowest mean absolute error (MAE) of 8.4 kcal·mol and rSCAN-3c offering a robust cost-efficient alternative (19.6 kcal·mol). Furthermore, we discuss the performance of selected semiempirical methods and contemporary machine-learning interatomic potentials.

摘要

我们介绍了MindlessGen,这是一个基于Python的生成器,用于通过随机原子放置和随后的几何优化来创建化学性质多样的“无意义”分子。使用这个框架,我们构建了基准集,其中包含2061个分子,并具有用于H促进分解反应的高水平PNO-LCCSD(T)-F12参考数据。该数据集为使用超越传统化学空间的分子结构来测试、验证和训练密度泛函近似(DFA)、半经验方法、力场和机器学习势提供了具有挑战性的基准。对于DFA,我们最初假设高度参数化的泛函在这个数据集上可能表现不佳。然而,未观察到拟合策略与准确性之间的一致关系。出现了明显的雅各布天梯趋势,ωB97X-2实现了8.4 kcal·mol的最低平均绝对误差(MAE),而rSCAN-3c提供了一种稳健且经济高效的替代方案(19.6 kcal·mol)。此外,我们还讨论了选定的半经验方法和当代机器学习原子间势的性能。

相似文献

1
Chemical Space Exploration with Artificial "Mindless" Molecules.
J Chem Inf Model. 2025 Sep 22;65(18):9576-9587. doi: 10.1021/acs.jcim.5c01364. Epub 2025 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验