文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Properties and Characterization of Cryogels: Structural, Mechanical, and Functional Insights.

作者信息

Jain Era, Zhang Kaixiang, Mishra Tiwari Ruchi

机构信息

Department of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States.

Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States.

出版信息

ACS Omega. 2025 Aug 11;10(33):36771-36787. doi: 10.1021/acsomega.5c02863. eCollection 2025 Aug 26.


DOI:10.1021/acsomega.5c02863
PMID:40893318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12391980/
Abstract

Cryogels are a distinct class of macroporous polymeric materials formed through cryopolymerization, where precursor monomers and polymers undergo polymerization and cross-linking under freezing conditions. Unlike conventional hydrogels, which exhibit nanoscale porosity and are synthesized at ambient temperatures, cryogels feature interconnected micrometer-sized pores that confer unique mechanical, structural, and functional properties. Their high porosity, rapid hydration, and efficient mass transport make them highly desirable for tissue engineering, biosensing, drug delivery, and environmental remediation applications. However, a critical challenge remains a comprehensive understanding of the intricate relationships among synthesis parameters, microstructure, and functional performance. This review provides a systematic discussion of cryogel properties, with a focus on their mechanical resilience, biocompatibility, and shape recovery behavior. We examine recent advancements in characterization techniques, including in situ imaging, advanced rheological assessments, and machine learning-assisted porosity evaluation, which have significantly improved our ability to assess cryogel performance. Additionally, we review the biophysical characterization of cryogels composed of different polymer systems, elucidating structure-property correlations in pore architecture and cellular interactions. Expanding beyond traditional biomedical applications, we briefly describe the emerging potential of cryogels in biosensors, soft robotics, and environmental sustainability, emphasizing the importance of an integrated approach that links the structure to functional outcomes. By providing a detailed discussion of established and cutting-edge characterization methodologies, this perspective is a valuable resource for researchers striving to develop next-generation cryogels with precisely tailored properties for specialized applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/5d9806ff07d6/ao5c02863_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/8a486cebcabd/ao5c02863_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/15649334588a/ao5c02863_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/ba808d5c73f3/ao5c02863_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/17f274b0fbcb/ao5c02863_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/d5cdbfed3c18/ao5c02863_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/add7e90e2ea6/ao5c02863_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/5d155f65756d/ao5c02863_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/5d9806ff07d6/ao5c02863_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/8a486cebcabd/ao5c02863_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/15649334588a/ao5c02863_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/ba808d5c73f3/ao5c02863_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/17f274b0fbcb/ao5c02863_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/d5cdbfed3c18/ao5c02863_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/add7e90e2ea6/ao5c02863_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/5d155f65756d/ao5c02863_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/12391980/5d9806ff07d6/ao5c02863_0008.jpg

相似文献

[1]
Properties and Characterization of Cryogels: Structural, Mechanical, and Functional Insights.

ACS Omega. 2025-8-11

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Electrophoresis

2025-1

[7]
Hydrogen-Bond Cross-Linking between Chitosan and Urethane-Modified Polycaprolactone: Influence of PCL Structure on Cryogel Properties.

ACS Biomater Sci Eng. 2025-8-11

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

[10]
Discovery of Stable Extra-large Pore Zeolites Based on Rational Design of Structure-directing Agents.

Acc Chem Res. 2025-8-5

本文引用的文献

[1]
Polymer oxidation: A strategy for the controlled degradation of injectable cryogels.

Mater Today Bio. 2025-4-8

[2]
Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

Nat Commun. 2025-1-2

[3]
Cryogenic 3D Printing of GelMA/Graphene Bioinks: Improved Mechanical Strength and Structural Properties for Tissue Engineering.

Int J Nanomedicine. 2024

[4]
Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering.

ACS Appl Bio Mater. 2024-9-16

[5]
Hybrid machine learning model based predictions for properties of poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose.

J Chromatogr A. 2024-7-19

[6]
DNA Cryogels with Anisotropic Mechanical and Responsive Properties for Specific Cell Capture and Release.

J Am Chem Soc. 2024-3-6

[7]
Cellulose nanocrystals-reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration.

J Biomed Mater Res B Appl Biomater. 2024-2

[8]
BM-MSC-Loaded Graphene-Collagen Cryogels Ameliorate Neuroinflammation in a Rat Spinal Cord Injury Model.

ACS Appl Bio Mater. 2024-3-18

[9]
Aligned cryogel fibers incorporated 3D printed scaffold effectively facilitates bone regeneration by enhancing cell recruitment and function.

Sci Adv. 2024-2-9

[10]
Nanoapatite-Loaded κ-Carrageenan/Poly(vinyl alcohol)-Based Injectable Cryogel for Hemostasis and Wound Healing.

Biomacromolecules. 2024-2-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索