Combination of WEE1 Inhibitor and Vitamin K2 Enhances Therapeutic Efficacy in Chronic Myeloid Leukemia.

作者信息

Okabe Seiichi, Arai Yuya, Gotoh Akihiko, Akahane Daigo

机构信息

Department of Hematology Tokyo Medical University Tokyo Japan.

出版信息

Cancer Innov. 2025 Aug 28;4(5):e70024. doi: 10.1002/cai2.70024. eCollection 2025 Oct.

Abstract

BACKGROUND

Chronic myeloid leukemia (CML) is a clonal malignancy propelled by the fusion gene originating from the Philadelphia chromosome. This gene activates ABL tyrosine kinase, which enhances the survival of leukemic cells. Although tyrosine kinase inhibitors (TKIs) have significantly advanced the treatment of CML, resistance to these inhibitors presents a substantial hurdle. Consequently, novel therapeutic strategies targeting resistance mechanisms independent of are urgently needed.

METHODS

This study investigated the potential impact of combining WEE1 inhibitors, particularly MK-1775, with vitamin K2 (VK2) in treating CML. To analyze differentially expressed and spliced transcripts in CML, we examined mRNA profiles from peripheral blood mononuclear cells of five patients with CML (during chronic and blast phases) and five healthy controls. The samples were analyzed using deep sequencing. Differential expression analyses were performed using RaNA-Seq and Heatmapper, the latter of which was designed for complex data set visualizations.

RESULTS

WEE1 controls the G2/M checkpoint to prevent early mitosis, and blocking it increases the cytotoxicity of agents that damage deoxyribonucleic acid, especially in cancers lacking p53. VK2, a micronutrient, exerts anticancer effects against various malignancies. Gene expression studies have indicated that PKMYT1 expression is elevated in CML but not WEE1 cells. MK-1775 successfully halted the growth of both standard and TKI-resistant CML cell lines by triggering apoptosis via caspase 3/7 activation. VK2 reduced the viability of CML cells and increased cytotoxicity. A combined regimen of MK-1775 and VK2 markedly decreased colony growth, disrupted mitochondrial membrane potential, and increased death in CML cells, including those resistant to TKIs.

CONCLUSIONS

The results suggest that a combination of MK-1775 and VK2 represents a potentially effective treatment strategy for CML, especially in drug-resistant cases.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f0/12394061/4d6056b3686e/CAI2-4-e70024-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索