Zhang Lin, Li Yan, Wang Yanqin, Liu Zhaohui, Kronzucker Herbert J, Wang Zhaoyue, Shi Weiming, Li Guangjie
State Key Laboratory of Nutrient Use and Management, National Agricultural Experimental Station for Soil Quality, Jinan, China, Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China.
School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
Front Plant Sci. 2025 Aug 15;16:1653008. doi: 10.3389/fpls.2025.1653008. eCollection 2025.
Waterlogging poses a significant global threat to agriculture by inducing ion toxicities (e.g. Fe², Mn², NH ) in roots due to soil redox changes. This review synthesizes current insights into how plant roots, particularly in Arabidopsis, respond to these toxicities, focusing on root system architecture (RSA) modifications and underlying mechanisms. Under waterlogging, soil redox changes drive Fe² and Mn² accumulation in reducing layers, while NH -based fertilizers elevate NH :NO ratios. NH inhibits primary root (PR) elongation by disrupting cell division and energy metabolism via VTC1 and LPR2 genes, while locally stimulating lateral root (LR) formation through pH-dependent auxin diffusion. Ethylene and NO signaling interact to modulate gravitropism via PIN2 and ARG1/GSA1 pathways. Fe toxicity arrests PR growth by reducing cell activity in the root tip, involving ethylene, ROS (HO/O ), and NO pathways. GSNOR emerges as a key gene for Fe tolerance, balancing NO homeostasis. LR formation under Fe stress relies on PIN2/AUX1-mediated auxin transport and ferritin storage, with ROS-auxin crosstalk influencing adaptive responses. Mn toxicity inhibits PR elongation by repressing auxin biosynthesis (YUC genes) and efflux (PIN4/PIN7), while miR781 and cation transporters (CAX4, MTP11) facilitate detoxification. Vacuolar compartmentation and Ca² signaling via ECA proteins are also critical. Despite progress, key gaps remain: identifying ion sensors in root tips, extrapolating findings to long-lived species, modeling multi-ion interactions under dynamic waterlogging conditions, and establishing real-time root signal monitoring systems. Integrating temporal and environmental factors (e.g. temperature) will enhance understanding of RSA reprogramming for waterlogging tolerance.
涝害通过土壤氧化还原变化在根部诱导离子毒性(如Fe²、Mn²、NH ),对全球农业构成重大威胁。本综述综合了当前对植物根系,特别是拟南芥根系如何应对这些毒性的见解,重点关注根系结构(RSA)的改变及其潜在机制。在涝害条件下,土壤氧化还原变化促使Fe²和Mn²在还原层积累,而基于NH 的肥料会提高NH :NO 比率。NH 通过VTC1和LPR2基因破坏细胞分裂和能量代谢来抑制主根(PR)伸长,同时通过pH依赖的生长素扩散局部刺激侧根(LR)形成。乙烯和NO信号相互作用,通过PIN2和ARG1/GSA1途径调节向地性。Fe毒性通过降低根尖细胞活性来阻止PR生长,涉及乙烯、ROS(HO/O )和NO途径。GSNOR成为Fe耐受性的关键基因,平衡NO稳态。Fe胁迫下LR的形成依赖于PIN2/AUX1介导的生长素运输和铁蛋白储存,ROS-生长素相互作用影响适应性反应。Mn毒性通过抑制生长素生物合成(YUC基因)和外排(PIN4/PIN7)来抑制PR伸长,而miR781和阳离子转运蛋白(CAX4、MTP11)促进解毒。液泡区室化和通过ECA蛋白的Ca²信号传导也至关重要。尽管取得了进展,但仍存在关键差距:确定根尖中的离子传感器,将研究结果外推到长寿物种,模拟动态涝害条件下的多离子相互作用,以及建立实时根系信号监测系统。整合时间和环境因素(如温度)将增强对RSA重编程以实现耐涝性的理解。