Suppr超能文献

Wag31结构域在细胞周期中用于隔膜募集和极性分布的功能解析。

Functional dissection of Wag31 domains for septal recruitment and polar distribution during the cell cycle.

作者信息

Petit Julienne, Megrian Daniela, Martinez Mariano, Sogues Adrià, de Sousa-d'Auria Célia, Assaya Mathilde Ben, Thouvenot Catherine, Lesur Emilie, Bourdreux Yann, Bayan Nicolas, Alzari Pedro M, Wehenkel Anne Marie

机构信息

Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France.

Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France.

出版信息

bioRxiv. 2025 Aug 21:2025.08.21.671543. doi: 10.1101/2025.08.21.671543.

Abstract

Bacterial cell morphogenesis is controlled by the synthesis and organization of peptidoglycan and driven by multi-protein complexes such as the divisome and elongasome. Here we investigate the role of the DivIVA homologue, Wag31, the elongasome scaffold essential for polar growth in . Conditional depletion of Wag31 results in viable but coccoid-shaped cells, showing that Wag31 is essential for rod shape maintenance. Our structural phylogenetic analyses of DivIVA homologues revealed that in , unlike , an intrinsically disordered region spatially separates the N-terminal lipid-binding domain (LBD) from the C-terminal coiled-coil domain (CCD). We show that the LBD is necessary and sufficient for septum localization, independent of its membrane-binding properties, while the CCD domain mediates self-interaction and polar accumulation. Our findings suggest that Wag31 is recruited specifically to the septum through protein-protein interactions, priming the future pole and allowing for a timely divisome-elongasome transition at cytokinesis. Once the pole is formed the self-aggregative properties of the C-terminal CCD dominate and form a stable structure that likely organizes the pole for cell wall biosynthesis.

摘要

细菌细胞形态发生由肽聚糖的合成与组织控制,并由诸如分裂体和伸长体等多蛋白复合物驱动。在此,我们研究了DivIVA同源物Wag31的作用,它是[具体物种]中极性生长所必需的伸长体支架。Wag31的条件性缺失导致细胞存活但呈球菌状,表明Wag31对杆状形态的维持至关重要。我们对DivIVA同源物的结构系统发育分析表明,在[具体物种]中,与[另一物种]不同,一个内在无序区域在空间上使N端脂质结合结构域(LBD)与C端卷曲螺旋结构域(CCD)分离。我们发现,LBD对于隔膜定位是必要且充分的,与其膜结合特性无关,而CCD结构域介导自我相互作用和极性积累。我们的研究结果表明,Wag31通过蛋白质 - 蛋白质相互作用被特异性招募到隔膜,为未来的极体做好准备,并在胞质分裂时实现及时的分裂体 - 伸长体转变。一旦极体形成,C端CCD的自我聚集特性占主导并形成一个稳定结构,该结构可能为细胞壁生物合成组织极体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52be/12393619/ad379fb9988c/nihpp-2025.08.21.671543v1-f0001.jpg

相似文献

1
3
4
FtsZ-mediated spatial-temporal control over septal cell wall synthesis.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2426431122. doi: 10.1073/pnas.2426431122. Epub 2025 Jun 30.
6
Regulation of the essential peptidoglycan hydrolytic complex FtsEX-PcsB during cell division.
bioRxiv. 2025 May 23:2025.05.23.655736. doi: 10.1101/2025.05.23.655736.
8
A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity.
mBio. 2017 Feb 28;8(1):e02238-16. doi: 10.1128/mBio.02238-16.
9
Cryo-EM structure and polar assembly of the PS2 S-layer of .
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2426928122. doi: 10.1073/pnas.2426928122. Epub 2025 Jul 29.
10
A short intrinsically disordered domain of MCPyV ALTO regulates host TBK1 signaling and MCPyV latency.
bioRxiv. 2025 Aug 15:2025.08.09.669491. doi: 10.1101/2025.08.09.669491.

本文引用的文献

1
FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB.
Elife. 2024 Apr 19;13:e85579. doi: 10.7554/eLife.85579.
2
Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation.
Nat Microbiol. 2023 Oct;8(10):1896-1910. doi: 10.1038/s41564-023-01473-0. Epub 2023 Sep 7.
3
Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum.
Front Microbiol. 2023 Jan 12;13:1085918. doi: 10.3389/fmicb.2022.1085918. eCollection 2022.
4
Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria.
Nat Microbiol. 2022 Dec;7(12):2114-2127. doi: 10.1038/s41564-022-01257-y. Epub 2022 Nov 21.
5
Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation.
Nat Methods. 2022 Nov;19(11):1438-1448. doi: 10.1038/s41592-022-01639-4. Epub 2022 Oct 17.
6
Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein.
Genes (Basel). 2022 Jan 30;13(2):278. doi: 10.3390/genes13020278.
8
Cytoskeletal proteins: lessons learned from bacteria.
Phys Biol. 2022 Feb 17;19(2). doi: 10.1088/1478-3975/ac4ef0.
9
GenBank.
Nucleic Acids Res. 2022 Jan 7;50(D1):D161-D164. doi: 10.1093/nar/gkab1135.
10
Growth and Division of the Peptidoglycan Matrix.
Annu Rev Microbiol. 2021 Oct 8;75:315-336. doi: 10.1146/annurev-micro-020518-120056. Epub 2021 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验