Mashhadi Ali Rajabi, Wallois Fabrice, Edalati Mohammadreza, Levé Florence, Stamatiadis Alexandros, Chazal Christelle, Trainor Laurel, Moghimi Sahar
Inserm UMR1105, GRAMFC, Université de Picardie Jules Verne, Amiens, France.
Inserm UMR1105, EFSN Pédiatriques, CHU, Amiens, France.
iScience. 2025 Jul 24;28(9):113028. doi: 10.1016/j.isci.2025.113028. eCollection 2025 Sep 19.
Rhythm experience begins in fetal life, shaping neural capacities critical for language, communication, and motor skills. While rhythm processing in adults involves distributed cortical networks, including premotor and supplementary motor regions, the mechanisms in the fetal brain remain unclear. We provide evidence that premature newborns encode rhythmic beats through cortical networks extending beyond the auditory cortex into premotor and sensorimotor regions. Using high-density functional near-infrared spectroscopy, we show that auditory beats trigger distinct cortical activation patterns, indicating early involvement of an auditory-motor network, despite the absence of coordinated motor activity. Our results highlight a fundamental role for these regions in rhythm perception, forming the basis for predictive timing mechanisms. This early engagement of sensorimotor regions reveals a neural framework supporting beat perception from the fetal stage onward. These findings advance understanding of the neural architecture for rhythm processing, showing that the premature brain is already wired for complex auditory-motor interactions.
节奏体验始于胎儿期,塑造了对语言、交流和运动技能至关重要的神经能力。虽然成年人的节奏处理涉及分布式皮层网络,包括运动前区和辅助运动区,但胎儿大脑中的机制仍不清楚。我们提供的证据表明,早产新生儿通过延伸至听觉皮层之外、进入运动前区和感觉运动区的皮层网络对节奏节拍进行编码。使用高密度功能近红外光谱技术,我们发现听觉节拍会触发不同的皮层激活模式,这表明尽管缺乏协调的运动活动,但听觉-运动网络已早期参与其中。我们的研究结果突出了这些区域在节奏感知中的基本作用,为预测性计时机制奠定了基础。感觉运动区的这种早期参与揭示了一个从胎儿期起就支持节拍感知的神经框架。这些发现推进了对节奏处理神经结构的理解,表明早产大脑已经具备了进行复杂听觉-运动相互作用的神经连接。