D'Arrigo Cristina, Labbate Sara, Galante Denise
Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council of Italy, Genoa, Italy.
Stem Cells Int. 2025 Aug 21;2025:2616653. doi: 10.1155/sci/2616653. eCollection 2025.
Acute and chronic neurodegenerative conditions (NDs) are major causes of disability and mortality worldwide. Acute NDs encompass conditions such as stroke, traumatic brain injury (TBI), and spinal cord injury (SCI). On the other hand, chronic NDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Currently, no definitive cure exists for these diseases, and available therapies focus primarily on slowing the progression of symptoms. Mesenchymal stem cells (MSCs), due to their multilineage differentiation capacity, immunomodulatory abilities, and regenerative properties, have gained attention in regenerative medicine. In recent years, extracellular vesicles (EVs) derived from MSCs have shown great promise as a cell-free therapeutic approach, eliminating the risks associated with direct MSCs use, such as tumorigenicity and poor cell survival after transplantation. EVs have emerged as powerful mediators of intercellular communication and tissue repair, exhibiting immunomodulatory, anti-inflammatory, and proregenerative properties. However, limitations such as low EVs yield and reduced efficacy due to MSCs replicative senescence restrict their therapeutic potential. Preconditioning strategies, including hypoxia, 3D cultures, and biochemical priming, have been explored in other fields to enhance EVs properties, yet their specific application to NDs remains under-reported. This review aims to address this gap by analyzing the preconditioning methods used to boost the therapeutic potential of MSCs-derived EVs for neurodegenerative diseases. These preconditioning strategies may enhance EVs yield, functional cargo, and targeted therapeutic efficacy for treating acute and chronic NDs.
Int J Nanomedicine. 2025-7-2
Explor Neuroprotective Ther. 2025
Front Pharmacol. 2025-2-10
Metab Brain Dis. 2024-8