Suppr超能文献

体重指数与长期病假风险的工具变量分析:挪威HUNT研究

An instrumental variable analysis of body mass index and risk of long-term sick leave: the HUNT Study, Norway.

作者信息

Moe Karoline, Skarpsno Eivind Schjelderup, Nilsen Tom Ivar Lund, Kaspersen Silje L, Ose Solveig Osborg, Carslake David, Mork Paul Jarle, Aasdahl Lene

机构信息

Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway.

Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.

出版信息

Eur J Epidemiol. 2025 Sep 4. doi: 10.1007/s10654-025-01299-6.

Abstract

A more comprehensive understanding of the causal relationships between body mass index (BMI) and sick leave is needed. We aimed to examine the effect of BMI on the risk of cause-specific and all-cause long-term sick leave using an instrumental variable approach. The study included 21,918 adults participating in the two latest surveys of the population-based HUNT Study (HUNT3, 2006-2008 and HUNT4, 2017-2019) linked with registry data on cause-specific sick leave, including musculoskeletal and mental disorders. We used Cox regression to estimate risk of long-term sick leave per standard deviation (SD) increase in z-score of BMI, applying both conventional analysis of own BMI and instrumental variable analysis based on offspring BMI. In the conventional analyses, hazard ratios per SD increase in z-score of BMI ranged from 1.04 (95% confidence interval (CI) 0.99-1.08) for mental health disorders in women to 1.17 (95% CI 1.13-1.22) for musculoskeletal disorders in men. The instrumental variable approach supported that higher BMI increased the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The analyses suggested that offspring BMI as an instrument is not independent of shared confounding. The results from both the conventional and instrumental variable analyses show that higher BMI increases the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The instrumental variable method is likely to remove bias due to reverse causation, but residual bias due to shared confounding factors cannot be ruled out.

摘要

需要对体重指数(BMI)与病假之间的因果关系有更全面的了解。我们旨在使用工具变量法研究BMI对特定病因和全因长期病假风险的影响。该研究纳入了21918名成年人,他们参与了基于人群的HUNT研究的两项最新调查(HUNT3,2006 - 2008年和HUNT4,2017 - 2019年),并与特定病因病假的登记数据相关联,包括肌肉骨骼疾病和精神障碍。我们使用Cox回归来估计BMI的z评分每增加一个标准差(SD)时长期病假的风险,同时应用自身BMI的传统分析和基于后代BMI的工具变量分析。在传统分析中,BMI的z评分每增加一个SD,女性心理健康障碍的风险比范围为1.04(95%置信区间(CI)0.99 - 1.08),男性肌肉骨骼疾病的风险比为1.17(95%CI 1.13 - 1.22)。工具变量法支持较高的BMI会增加长期病假的风险,但男性因心理健康障碍导致的病假除外。分析表明,将后代BMI作为一个工具并非独立于共同的混杂因素。传统分析和工具变量分析的结果均表明,较高的BMI会增加长期病假的风险,但男性因心理健康障碍导致的病假除外。工具变量法可能会消除因反向因果关系导致的偏差,但由于共同混杂因素导致的残余偏差不能排除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验