Suppr超能文献

半干旱水库中浮游植物结构的环境驱动因素

Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir.

作者信息

Zi Fangze, Song Tianjian, Cai Wenxia, Liu Jiaxuan, Ma Yanwu, Lin Xuyuan, Zhao Xinhong, Hu Bolin, Ren Daoquan, Song Yong, Chen Shengao

机构信息

College of Life Sciences and Technology, Tarim Research Center of Rare Fishes, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China.

College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

Biology (Basel). 2025 Jul 22;14(8):914. doi: 10.3390/biology14080914.

Abstract

Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems.

摘要

干旱地区的人工水库为研究气候变化和人类活动综合压力下浮游生物群落的空间和功能动态提供了独特的生态环境。本研究于2024年8月和10月对新疆伊犁地区17个人工水库的浮游植物群落结构及其环境驱动因素进行了系统调查。伊犁地区位于中国西北温带大陆干旱区。共鉴定出209种浮游植物,其中硅藻门、绿藻门和蓝藻门占群落的92%以上,呈现寡头优势格局。数量优势(硅藻)和生物量优势(蓝藻)之间的解耦揭示了主要类群之间的功能分化和生态互补性。通过包括Mantel检验、主成分分析(PCA)和冗余分析(RDA)在内的多变量分析,我们发现不同生态水平的浮游植物群落结构对环境梯度的响应明显不同。氧化还原电位(ORP)、溶解氧(DO)和矿化参数(EC、TDS)是形态操作分类单元(MOTU)的关键驱动因素。相比之下,优势种(SP)对盐度和pH值更敏感。季节性分析表明,夏季和秋季的相关结构发生了显著变化,反映了气候对氧化还原条件和养分溶解度的调节影响。使用随机森林模型的机器学习有效地识别了具有强大判别力的核心类群(如MOTU1和SP1),证实了它们作为水质评估和生态变化早期预警生物指标的潜力。这些核心类群具有广泛的空间分布和稳定的优势,而局部优势种对特定地点的环境条件表现出高度敏感性。我们的研究结果强调了将分类分辨率与功能和空间分析相结合以揭示干旱区水库生态响应机制 的必要性。本研究为气候敏感型淡水生态系统的环境监测、水资源管理和恢复力评估提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed0/12383667/091d1ac1c612/biology-14-00914-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验