Ma Guofang, Scully Miranda G, Luo Jiahui, Feng Jiazuo H, Gunn Christine M, diFlorio-Alexander Roberta M, Tosteson Anna N A, Kraft Sally A, Marrero Wesley J
Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.
Department of Computer Science, Dartmouth College, Hanover, NH, United States.
Front Med (Lausanne). 2025 Aug 20;12:1644287. doi: 10.3389/fmed.2025.1644287. eCollection 2025.
This study addresses the critical science challenge of operationalizing social determinants of health (SDoH) in clinical practice. We develop and validate models demonstrating how SDoH predicts mammogram screening behavior within a rural population. Our work provides healthcare systems with an evidence-based framework for translating SDoH data into effective interventions.
We model the relationship between SDoH and breast cancer screening adherence using data from over 63,000 patients with established primary care relationships within the Dartmouth Health System, an academic health system serving northern New England through seven hospitals and affiliated ambulatory clinics. Our analytical framework integrates multiple machine learning techniques including light gradient boosting machine, random forest, elastic-net logistic regression, Bayesian regression, and decision tree classifier with SDoH questionnaire responses, demographic information, geographic indicators, insurance status, and clinical measures to quantify and characterize the influence of SDoH on mammogram scheduling and attendance.
Our models achieve moderate discriminative performance in predicting screening behaviors, with an average Area Under the Receiver Operating Characteristic Curve (ROC AUC) of 71% for scheduling and 70% for attendance in validation datasets. Key social factors influencing screening behaviors include geographic accessibility measured by the Rural-Urban Commuting Area, neighborhood socioeconomic status captured by the Area Deprivation Index, and healthcare access factors related to clinical sites. Additional influential variables include months since the last mammogram, current age, and the Charlson Comorbidity Score, which intersect with social factors influencing healthcare utilization. By systematically modeling these SDoH and related factors, we identify opportunities for healthcare organizations to transform SDoH data into targeted, facility-level intervention strategies while adapting to payer incentives and addressing screening disparities.
Our model provides healthcare systems with a data-driven approach to understanding and addressing how SDoH shape mammogram screening behaviors, particularly among rural populations. This framework offers valuable guidance for healthcare providers to better understand and improve patients' screening behaviors through targeted, evidence-based interventions.
本研究应对了在临床实践中实施健康的社会决定因素(SDoH)这一关键科学挑战。我们开发并验证了模型,展示了SDoH如何预测农村人口的乳房X光检查筛查行为。我们的工作为医疗保健系统提供了一个基于证据的框架,用于将SDoH数据转化为有效的干预措施。
我们使用来自达特茅斯健康系统内超过63000名已建立初级保健关系患者的数据,对SDoH与乳腺癌筛查依从性之间的关系进行建模。达特茅斯健康系统是一个学术性健康系统,通过七家医院和附属门诊诊所为新英格兰北部提供服务。我们的分析框架将多种机器学习技术(包括轻梯度提升机、随机森林、弹性网逻辑回归、贝叶斯回归和决策树分类器)与SDoH问卷回复、人口统计信息、地理指标、保险状况和临床指标相结合,以量化和描述SDoH对乳房X光检查安排和就诊的影响。
我们的模型在预测筛查行为方面具有中等的判别性能,在验证数据集中,预测安排的平均受试者工作特征曲线下面积(ROC AUC)为71%,预测就诊的为70%。影响筛查行为的关键社会因素包括由城乡通勤区衡量的地理可达性、由地区贫困指数反映的邻里社会经济地位以及与临床地点相关的医疗保健可及性因素。其他有影响的变量包括距上次乳房X光检查的月数、当前年龄和查尔森合并症评分,这些与影响医疗保健利用的社会因素相互交织。通过系统地对这些SDoH及相关因素进行建模,我们确定了医疗保健组织将SDoH数据转化为有针对性的机构层面干预策略的机会,同时适应支付方激励措施并解决筛查差异问题。
我们的模型为医疗保健系统提供了一种数据驱动的方法,以理解和应对SDoH如何塑造乳房X光检查筛查行为,特别是在农村人口中。该框架为医疗保健提供者通过有针对性的、基于证据的干预措施更好地理解和改善患者的筛查行为提供了有价值的指导。