Suppr超能文献

通过蛋白质组学洞察诊断脓毒症:来自前瞻性重症监护病房队列的研究结果

Diagnosing Sepsis Through Proteomic Insights: Findings from a Prospective ICU Cohort.

作者信息

Ardabili A Khaleghi, Rice S, Bonavia A S

机构信息

Penn State College of Medicine, Hershey PA, USA.

Penn State Critical Illness and Sepsis Research Center (CISRC), Hershey, PA, USA.

出版信息

medRxiv. 2025 Aug 27:2025.08.26.25334458. doi: 10.1101/2025.08.26.25334458.

Abstract

INTRODUCTION

Sepsis diagnosis remains clinical and heterogeneous. We hypothesized that a proteomics-informed machine-learning approach could identify a small, easy-to-use, and optimized set of clinical variables to complement or potentially outperform SOFA.

METHODS

We conducted a prospective, single-center, observational study in an academic intensive care unit. Plasma from critically ill patients with and without sepsis was analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS). Data were acquired with data-independent acquisition parallel accumulation-serial fragmentation (diaPASEF) and processed using DIA-NN software. Differentially expressed proteins informed model development. Random Forest models were trained in a Discovery cohort (n=55) to select clinical variables linked to the proteome, then tested in an independent Validation cohort (n=59). Recursive feature elimination (RFE) identified a minimal feature set that was predictive of sepsis. The performance was assessed using repeated cross-validation and external validation.

RESULTS

Twelve plasma proteins differed between sepsis and non-sepsis patients at FDR < 0.1, corresponding to 26 proteome-enriched clinical variables. The classifier achieved mean AUC's of 0.73 and 0.76 in Discovery and Validation cohorts, respectively. RFE performance plateaued with ≥9 variables, peaked at an accuracy of 0.78, and deteriorated below seven; the final three features before collapse were plasma BUN, chemokine ligand 3 (CCL3), and creatinine. Proteome-to-clinical regression highlighted creatinine as having the strongest correlation (R = 0.558).

DISCUSSION

A concise set of routinely obtainable variables anchored by renal markers and CCL3 captured proteomic signals and discriminated sepsis across cohorts, supporting a "proteomics-informed, clinic-first" strategy for pragmatic EHR deployment.While larger multicenter studies are warranted, these findings suggest that renal dysfunction exerts a disproportionate influence on sepsis and that increased emphasis on kidney-related markers may improve both recognition and risk assessment.

摘要

引言

脓毒症的诊断仍然基于临床且具有异质性。我们假设,一种基于蛋白质组学的机器学习方法可以识别出一组小型、易于使用且经过优化的临床变量,以补充或潜在地超越序贯器官衰竭评估(SOFA)评分。

方法

我们在一家学术重症监护病房进行了一项前瞻性、单中心观察性研究。使用液相色谱-串联质谱(LC-MS)分析患有和未患有脓毒症的危重症患者的血浆。数据通过数据非依赖采集平行累积-序列碎裂(diaPASEF)获取,并使用DIA-NN软件进行处理。差异表达蛋白为模型开发提供信息。随机森林模型在发现队列(n = 55)中进行训练,以选择与蛋白质组相关的临床变量,然后在独立的验证队列(n = 59)中进行测试。递归特征消除(RFE)确定了一组最小的可预测脓毒症的特征集。使用重复交叉验证和外部验证评估模型性能。

结果

在错误发现率(FDR)< 0.1时,脓毒症患者和非脓毒症患者之间有12种血浆蛋白存在差异,对应26个富集蛋白质组的临床变量。该分类器在发现队列和验证队列中的平均曲线下面积(AUC)分别为0.73和0.76。RFE性能在≥9个变量时趋于平稳,在准确率为0.78时达到峰值,在低于7个变量时性能下降;崩溃前的最后三个特征是血浆尿素氮、趋化因子配体3(CCL3)和肌酐。蛋白质组与临床的回归分析突出显示肌酐具有最强的相关性(R = 0.558)。

讨论

一组以肾脏标志物和CCL3为基础的简洁的常规可获取变量捕获了蛋白质组学信号,并在各队列中区分了脓毒症,支持了一种“基于蛋白质组学信息、临床优先”的策略,用于务实的电子健康记录(EHR)部署。虽然需要更大规模的多中心研究,但这些发现表明肾功能障碍对脓毒症有不成比例的影响,并且更加重视与肾脏相关的标志物可能会改善识别和风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/117f/12407673/914c4406a536/nihpp-2025.08.26.25334458v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验